Metric properties of generalized
Cantor products
by

Y. Lacroix(!)

Abstract. Finite and absolutely continuous invariant measures for fibered
generalized Cantor products (in the sense of Sierpinski) are described. The
asymptotic behavior of the associated sequence of digits is studied. Lebesgue
complete uniform distribution is proved for sequences associated in a natural

way to these.

0. Introduction.

Generalized Cantor products are algorithms that give a representation of real numbers
x € [0,1] as infinite products of rational ones. They have been developed in [Opp] first.

Let us present those we shall consider from the metric point of view in this paper.

The letter "k” shall denote an integer > 1. For any x € [0,1], let 7¢(z) € N and
T(x) € [0, 1] be defined by

ro(z) — 1 ro(z) ro(z) + k
1 A e — T =z. | — .
(1) ro(z) +k—1 STS ro(z) + &’ (@) =2 ro(z)
One can see that 7o(z) = [1’%5] + 1. Define, for any real number z > 1,
a = (-1 (+k-1),
(2) bz = Qg / Az+1 = Q(z—1)(24+k)+1
Jz — [CLZ, az—|—1[°

The sequences (a,)n>1 and (by,),>1 are strictly increasing from 0 to 1. By definitions we
have Jn =[0,1[, J, N Jp = 0 if n # m and T(z) = z.a,,{; on J,. Moreover

T(Jn) = [bn, 1].
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Thus, according to the terminology of F. Schweiger (see [Sch]), the triple (7', [0, 1], (Jn)n>1)

is a measurable fibered system on [0, 1] with the Borel o—algebra B.

Graph of T for k = 2.

Given k£ > 1 and z € [0, 1[, we define the sequence (Tt(x))t>0 as follows :

(3) ri(x) = ro(T (),

where T(*) denotes the ¢-th iterate of T (T(0) = Idjo,1p).

W. Sierpinski ([Sie-1]) and A. Oppenheim ([Opp]) showed that for any integer k& > 1
and any z € [0, 1], with (3),

_ 17 ril@)
) | s

The case k = 1 corresponds to the Cantor’s product (see [Per]). In [Kn-Kn|, generalizations
of the Cantor’s product that are given do not overlap with those from [Sie-1] or [Opp], and

are not arising from fibered systems on [0, 1.

Euler’s formula (see [MeFr-VdPo|) and Escott’s formula ([Esc], [Sie-2])
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where p(x) = 222 — 1 and 7(z) = 2% + 322 — 2, both give product expansions for integer
x (with k =1 or k = 2). Some other formulas can be derived from the work of Ostrowski
[Ost] (see also [MeFr-VdPol). P. Stambul ([Sta]) points out to us the following Cantor
product expansion N
1/( 2™
vemr=ll (75m 1)

where ¢(z) = 422 — 1 + 22v/222 — 1 is not a polynomial. Thus, quadratic irrationals in
[0, 1] are not characterized by the fact that their sequence of digits for the Cantor product
has ultimately polynomial growth (cf [Eng]).

In Part T we give some preliminary notations for cylinder sets and describe admissible

sequences of digits r,(z) which occur in the product formula (4).

Our purpose is to study, as has been done for several other fibered systems (for
instance continued fractions in [Khi]), the metric properties of the system (7, [0, 1[, B). The
motivation for this is that in the case of continued fractions, the asymptotic behavior for the
relevant sequence of digits was deduced from the identification of the density m for a

Lebesgue-continuous ergodic invariant measure on [0, 1], for the transformation x %— [l]

if z # 0, and 0 — 0 (see [Khi], or [Sch]).

But it appears, in part 2, that the only probability invariant measure for 7' is the Dirac
measure at 0, and that all o—finite A—continuous invariant measures for T are determined
by their restrictions on wandering sets for T'. Therefore, it should be the case that T is not

ergodic with respect to .

However, in part 3, in analogy with what happens in the case of Sylvester’s series (see
[Ver], [Sch]), and in some sense quite at the opposite of what does for continued fractions,

it appears that the limit function

. log (rn (az))

flo) = tm —5i—
exists A\—a.e., and enables to conclude to the non ergodicity of T" with respect to A. The limit
function § should be proved to have most of the properties the relevant one for Sylvester’s
series was proved to have in [Go-Sm]|, where it essentially was providing the first explicitly

defined function having jointly continuous occupation density (see also [Gal]).

Finally, in part 4, we introduce the sequence of random variables (tn(.))n>0 defined
on [0,1] by
B T(n—H)(.T) _ brn(m)
B 1-b

tn(x , ¢ €[0,1], n > 0.

n ()
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We show, using a modified version of a theorem of W. Philipp ([Phi]) in [Sch], chapter
11, that A-a.e., the sequence (tn(m))n>0 is completely uniformly distributed modulo 1
(see [Ku-Ni]). This generalizes some similar uniform distribution for Sylvester’s series, or

Engel’s series, proved in [Sch-1].

The author would like to express his thanks to Professors J.P. Allouche, P. Liardet, F.
Schweiger, B. Host, and to the members of the Referee, for valuable discussions or useful

remarks.

1. Admissible sequences of digits

From [Sie-1] and the definition of T' one has

+oo (o
) = [T e ol

with T"(z) € [T’"igil, 2z and 7, = 7, (). This shall be called the T'—expansion of z.
Take 1 as the value of the empty product, and let n > 0. One has

T rila) 1 1) (1) () — 1
0<j1;[07°j(56)+k s <j1;[o7’j($)+k)(’“n(x)+k R ’“n(m)“Lk)
k
S @ F R @ k1)

Let n be an integer > 1 and let 7 := (rq,..., r,_1) € N*". The set
B(r):=J,, T Jp) N -nT (T, )

is said to be a cylinder set of rank n if it is not empty. For » = (rg,...,r,_1) € N"

(respectively p = (pi)i>0) and j € [0,n] (resp. j > 0), define

j—1 j—1
T Di
I1. = CIT = .
(6) o =117 <p 0 =1 pﬁk)

(7) B(r) = [,(r).by,_,, I(r)[ -



Definition 1.1. An n—uple r = (r9,...,7n—1) (resp. a sequence p = (Pm)m>0 € NN)
is said to be a T—admissible n—uple (resp. sequence) of digits if B(r) # 0 (resp.
B(poy-..ypn_1) # 0 for all n > 1). The set of T—admissible n—uples will be denoted
by A,,.

From (5), p is a T—admissible sequence of digits if and only if for all n > 0, one has

[bp,., L[NTp,,., # 0.

Proposition 1.1. A sequence p = (p,)n>0 of natural numbers is a T—admissible sequence

of digits if and only if for all n > 0 one has :
Pnt1 > ph+ (pn — 1)(k—1) > p}.

Proof. Since b, has the form a(,_1)(r4k)+1, an admissible sequence (Pn)n>0 is characterized

by the inequalities by, < ap, ,+1, n > 0. In other words,

(Pn — 1)(pn + k) Pr+1
(Pn —1)(pn +k)+Ek  prp1+k

After simplification, we get the desired inequality. ]

Remark 1.1. Let p(.) be the polynomial p(z) := 22 + (z — 1)(k — 1). From (2) we have
Up = Qn410p(n) = nt+10p(n)+10p2(n)- Hence by induction we obtain the following product
formula

n—1 ~  pW(n

n—1+k _jzlp(j)(n)+k'

According to Proposition 1.1,, formula (8) gives the T'—expansion of n’_‘iﬁrk, forn € N
(this was known from [Opp|). However formula (8) holds for all real numbers & > 1 and

n > 1.

2. Invariant measures

The transformation T is such that 7(0) = 0 and if = €]0, 1], the sequence (T (z)),>0
is strictly increasing to 1. Thus, from the Riesz representation theorem and the individual
ergodic theorem, using Cesaro means, taking any generic point for p if p is an ergodic

invariant probability measure, one can see that necessarily, for any f € C([0,1]), [ fdu =
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lim,_,;- f(z) : since T'(0) = 0 is the only fixed point for 7', one must have u = §y, where

09 denotes the Dirac measure at point 0.

Remark 2.1. It is more interesting to consider probability measures p which are quasi-

invariant under T, that is to say pu is equivalent to poZ~!. We give an example of such a

measure which is discrete. Let (3;, j € Z be the points in [0,1] (identified to X) given by
p(2) —1

n = and fB_,=(k+1)""!

forn=20,1,2,.... By (5) and (8) one has

a( oy ﬁ P9 (p'™(2))
k+1 o p@ (p(™)(2)) + k
for n > 0 and T((k 4+ 1) (™*D) = (k 4+ 1)~™ for m > 1. Hence T(83,) = Bn+1 for all
n € Z. Let §, denote the Dirac measure at a then &, 0T~ = &, ,,. This proves that the
1
probability measure p := 3 Z 2_|”|5ﬁn is quasi-invariant under 7'
nGZ

Now let us look at o—finite A—continuous invariant measures. Let U be any proper
neighbourhood of 1, e.g. take U = [a, 1], 0 < a < 1, and extend T from [0, 1] to the 1-torus
[0,1] setting T'(1) =1 =0.Let V =T-1(U)\U. Then define V,, = T"(V), n € Z. Tt is a so
called wandering set ; indeed, using the fact that the sequence (1" (U)),, .7 is decreasing,

one has

“+o00
9) U V,=1[0,1], and V,NV,, =0 for m # n.

n=—oo

Now assume we want to determine the density for a o—finite T—invariant A—continuous
measure. Then if we take any positive, measurable and o—finite function on V, we can
define it on any V,,, taking its image via 7™, and finally we obtain a o—finite density

for a T-invariant A-continuous measure (use (9)). For example, take a = sA+2-: then

2(k+1)
V= [ k42 k42 [
= |2k+D)2 2061 D) |°




3. Non ergodicity of T' with respect to A,

and asymptotic behavior of (rn(x))n>0.

Lemma 3.1. There are two positive constants d; and dy such that for any non empty

cylinder set B(rg,...,rn—1) of rank n > 1 and for any integers w, j, (w > j > 1), such

that B(rg,-..,"n—1,J,w) Is a non empty cylinder set of rank n + 2 one has
. )
T0y-vvsT—1,J, W
d1]—2§( 0 nl]‘))§d2.]_2.
w /\(B(ro,...,rn_l,])) w

Proof. Put B = B(rg,...,"n_1,j,w), A= B(rg,...,mn_1,7) and P = II,,(r) for short (see
(6)), where r = (rg,...,7n_1) (cf. (6)). Then, with (7),
k ik
d \B)=PFP: .
GrRG+re—1 ™ B =P e T hw R - D

A(A) = P-

Therefore,
AB) _ jli+k-1)
MA)  (w+Ek)(w+k—1)

and the inequalities of the Lemma follow with constants (for example) d; = (k* + k)1
and dy = k. [ |

Lemma 3.2. The limit function f(z) := lim,, log(;% exists A—a.e. Moreover, ((.)
is measurable and there exists a constant v > 0 such that for all j > 1,n > 0 and alle > 0

one has

A{z; rn(zr) =jand 0 < B(z) —27"logj <¢e}) > (1 — 1) {rn =13},

0 and A—a.e.,
(10) X +o0 log(T:nJr(lw()mz))
Bw) = 4 | logri(e) + R

n=0

Proof. The second part of formula (10) is obvious, when the A-a.e existence of the limit

function (3 is known.

Let € > 0 and for x € [0, 1] define 3,(x) := 27" log(r,(z)). Since r,11(z) > rp(z)?,
the sequence (Bn(x))n>0 is not decreasing. Then (,1(x) — Bn(z) > € is equivalent to

Pni1(x) > exp(e.2")r, (z)2. From Lemma 3.1, we get

(11) Mry, =j and Bny1 — By > e} < dof Z J—2 JMrn = j}-

w7
w>j2 exp(e2ntl)



But it follows from elementary calculus that for all j > 1,

5 2
(12) > Wz S et

w,
w>;2 exp(e2nt1)

Using (11) and (12), we obtain

A({rn = and Bai1 — Bn > e}) < 2672 A ({rn = 5}).

Define 7,, = (v2 — 1)(\/5)*("”’1), such that Zm21 Nm = 1. Let n > 0, m > 1 be integers
and assume Sy, 1 (z) — Bnts—1(z) < ens for all s € {1,2,...,m}. Then Bpim(x) —Br(x) <€
so that for

Xn(jie) ==A{z; rn(x) =7 and Im > 1, Byrim(z) — Bu(z) > €}

we obtain
)\(Xn(j;e’f)) S )‘({rn = J and dm Z ]-a ﬂn—i—m - ﬁn—{—m—l > 677m})
S 2( Z e_Enm2n+m+1)>\({rn _ j})
m>1
13 < 2 A =3
( ) = m ({Tn — .7})

where v = v/2 — 1. But (13) is nothing that inequality (10) of Lemma 3.2. If we sum over
j all inequalities (10) (n fixed) we also get

2

/\({ﬂ—ﬁnés})zl—m.

Now it is quite clear that the sequence (5,(x)),>0 converges (in [0,+oc[) for almost all

x € [0,1[. Since 3,, is measurable, 3 also is. [

Remark 3.1. Notice that § satisfies the following functional equations :

1 1

Fr1”) =P

B(Tz) =2p(z) and B

As in the case of Sylvester’s series (see [Go-Sm |), it can be proved that ( is dense in its
epigraph and has local minimas at rational points exactly. In [Go-Sm] was first proved that
the § function for Sylvester’s series has a C* density. In [Gall, it was proved that for the
Cantor product, 3 has a C! density. This last result at least should hold for the generalized

Cantor products we are dealing with here.



Theorem 3.1. T is not ergodic with respect to A, i.e. there exists two disjoint T—invariant

subsets of [0, 1] with positive Lebesgue measure.

Proof of Theorem 3.1. Let J be a non empty open sub-interval of |0, cc[. Choose € > 0
such that there exist integers p > 1 and m > 1, satisfying

[10g(p) __ log(p)

om ) “om +el CJ

Let N. be an integer such that 1 — 6752#_1 > 0 for all n > N.. We can easily choose
integers d > 2 and n > N, in order to have 27" log d close enough to 27" log p such that

we still have
[10g(d) _ . log(d)
n T o9n

Since A({r, = d}) > 0 for any integer d > 1, inequality (10) implies A({z; S(z) € J}) > 0
and the set

+e|l CJ

E(J) = {z; f(z) € | 2"}
meZ
is measurable and T—invariant with A\(E(J)) > 0. Let J and J’ be two non empty open
intervals such that J C [, 3[ and J' C [2,1[. Then the sets E(J) and E(J') are disjoint,
T'—invariant and

u(E(J)) >0 and wu(E(J")) > 0.

This ends the proof. [ ]

4. Uniform distribution

In this section we study the distribution of 7™(x) in the interval [a,, (z), Gr, (z)+1]-

More precisely let (t,(.))n>0 be the sequence of random variables defined on [0, 1] by

T (x) — ar,
tn(z) = 1 —ar
_ T (z) - b

rn ()
1 > 0.
b z€[0,1], n>0

Let ®,,(.) denote the distribution function of ¢,(.), and define

Wi (d) = {; 0 < ta(z) < d}, d € [0,1].



Theorem 4.1. The sequence of random variables (t,(.)),~, is identically and uniformly
distributed (i.e., ®,(d) =d for 0 <d <1, n > 0).

Proof. For d € [0, 1] we have ®,,(d) = A({ z; 0 <t,(x) <d}). Let r = (ro,...,r) € Apt1
(see Definition 1.1). Since T"*(z) = II,},(r).z on B(ro,...,m,) and T+ (B(r)) =
[br, , 1], the set W, (d) is the union of the following pairwise disjoint sets

B(r)nWy(d) = {z; b, Mpi1(r) <z < pypq1(r)(by, +d(1 =0, ))}.
But A\(B(r) " W, (d)) = d\(B(r)) so
AWa(d) = Y dA\B(r)) =d. n

r€An11

With in mind the study of the A—a .e. complete uniform distribution of the sequence

(tn(x))nzo’ let us introduce the following ;

Definition 4.1. Let p € N and (dy,...,d,), (dy,...,d,) € [0, 1]P*L. Then, for any n > 0,
let En(do, ..., dy) = Wa(do) .. N Wisp(dy). Ifm > 1, let

(dos - -y dpy 1™y ooy dl) = (doy -y dpy 1,y 1, dl, e D).

m times

Let d_y =1 and E,(0) = [0,1].
With the above notations, we have ;

Theorem 4.2. For any integer p > 0, for any integer n > 1, any integer m > 0, any
(do, - -, dp,dy,- .., d,) €0, 1)2(+1),

1 n
(@) [MEBn(do,... dp, 1™ dy, ... dy)) —do---dpdg - - db)| < 20(p+ 1)%k*(k + 1) <§> ,

and

n+m

Proof : STEP 1. We need several lemmas and definitions ;

10



Lemma 4.1. Foranyn € N, m > 1,7 = (10,71, -+, Tn+tm) € Antm+1, one has

P2AN(B(Tnaty -+ Tnam)) A(B(r)) 9
(14) +k + < B ) < (k+ DN B(rnsts- - sTnim))
k(k+1)
(15) < =5
Moreover
. —(nt1 k
(16) A(B(ro,...,rs)) < min {27 (1), eI — }.

Proof. Notice that

To Tn4+m—1 k
NB(r)) = .
(B(r)) <r0 +k Tn4m—1 1 k) (Prtm + K)(Tnem +k—1)

(rn +k)(rn +k—1)

= AB(ro,.--y7n)) p

AB(rps1-«-Tnim))

and then inequality (14) follows from % < % < (k+ 1)z?, for z > 1. On the
other hand, put p(z) = x? + (z — 1)(k — 1) and assume that r,_; = 1(# r,) for a digit
with 0 < s < n. Proposition 1.1 and (7) imply

k
(P2 (rs) + k= 1)(pn=2) (rs) + k)

ANB(rgy...,rn)) < (k+1)"°

If r, =1 = r, the inequality (15) is evident. Otherwise r; > 2 but p("_s)(2) > 92"7°
therefore (16) is still true. It remains to prove (15). If 7, = 1, the inequality follows from

(16), otherwise we have

AB(Tpit, .oy Togm)) < k@™ (1) "2 < kr 2" < kro227m, -

Lemma 4.2. For positive natural numbers n and m let
Fo(m) = #{ (ro,...,mn_2) € N" 1 (ro,...,7n_a,m) € A, }.
Then F,,(m) < m.

Proof. We use induction on n. It is clear that Fj(m) < m. Now, let n > 1 be
given and assume Fj,(m) < m for all m > 1. Proposition 1.1 implies that for any

(roy.-«y"n_1,m) € Apy1 one has r,_1 < /m. Therefore

Fnii(m) < Z j<m. =



Lemma 4.3. For any positive natural numbers n, m and for any map s : A, — N™

satistying ((ro,.-.,7n-1),8(T0s+++,7"n_1)) € Apim, one has
E3(k+1)3
S B st < D
- 2n—|—m
TEAR

(we identify N™t™ with N™ x N™).

Proof. We first study the case m = 1. If n = 1, first notice that for any application
s1: A1 = N* — N* such that for any r € N*, (r,s1(r)) € As, from (7) and Proposition
1.1,

kr
2 A B £ 2 e )+ R +E -1
kr
= Z (r+k)(r?+k—-1r+1)(r2+(k—1)r)

r>1

But since k£ > 1,

k 1 1
D B N T — S;(r+1)(r2+1) =3

r>1
and indeed 2 < 5k3(k + 1)3.

Assume now that n > 2. Then from Lemma 4.1, it follows that for any r € A,,

r=(rgy.. yTn_1),
2 2
Tn—1 )‘(B(T)) k (k + 1)
AB < DAB(r)————= < 1 <
(Blrs(r) < (k + DAB() T2y < ki 1) S50 < S5
Then, for any N > 1,
1
STANBers() <K+ Y —+ Y A(B(r,s(r)))
redn reay, Tl e
1 A(B(r))
2
<SE(k+1) ) g +k(l+1) Y] =
t>N r€AR,
Tn—1SN
(k+1) ) a2
< W‘*‘k (k+1) Z /\(B(TOa---arn—2))ri_1'

12



But 7,1 > r2_, therefore with g = 4k?(k + 1)? and (16),

k*(k+1) g _
> AB(r, s(r)) < oz T g > r°,
reAn (rg,---» Tn—2)€EAL_1,
Ty 2§\/ﬁ
k2(k5 + ].) g _5
S IN2 on+1 Z k
1<k<v/N

Passing to the limit as IV tends to infinity, we get the case m = 1 with % g. The general
Do E(k+1

case follows from (15) which gives X (B(r, s(r))) < A (B(r, s1(r))) % |

Definition 4.2. Let n > 1 be an integer. Let r = (rg,...,rn_1) € A,. Let d € [0,1[. Then

define v'(d,r) to be the unique integer such that, if r'" = (ro, e 1, r’(d,r)), we have

IL,(r).(by,_, +d(1 = by, _,)) € B(r").

"

Denote the above admissible (n + 1)—uple r"” by rr'(d,r) (as a concatenation). If

(ry7') € N™"xN™, let rr’ be the (n+m)—uple defined by 71" = (rg, ..., Tr—1,T4s- s Tr_1)-

yIm—1

Endow the sets A,, with the lexicographic order. If d =1, and r € A,,, let r'(1,r) = 400,
and B(r + oo0) = (.

Let n>0and m > 1. Let r € Ay,41, r = (r0,...,7n), and define
An—l-l,m(r) = { 7,/ = (’r;’L+1’ ce ar;,—}—m) € Nma ’r”rl € An+m+1 }

Lemma 4.4. For any q > 1, and any k > 1,

1
(g+k).(¢g+k—1) -

1
? mZZ:O(q+m+k)((q+m)2+(q+m)(k—1)+1)(q+m+k—1)

Proof. The sum of the series is clearly bounded by

1
(q+k)(g+k—1)(¢*+q(k—1)+1)

+
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1 1
@21 t+E)(E+k—=1) ) (¢+1)?+(¢+1)(k-1)+1

_ 1 < 1 P 1 )
T (q+E)(g+k—1) \(¢g+1)(g+k)—2¢g—k+1 qg+1 (¢g+1)(g+k)

1 1
<
B <q+1) (¢+k)(g+k—1)
and g > 1. [ ]

STEP 2. Proof of Theorem 4.2. Let p’ > 1. Using refining partitions of cylinders on
[0, 1], one can see quite easily, with the use of Theorem 4.1. and Definition 4.2., that, given
(do,...,dy) €0, 1P+ n>1and r = (rg,...,7 ) € Ant1,

(17) M(En(do, ..., dy) N B(r)) =

> 3 o 3 dy A(B(rrns1 - 1nip)) )

Tn41€An41,1(") Tr42€Ang21(Trng1)s Ty €A, L (PR prg),
!/ /
Tp4+1<7'(dg,7) Tn42<r/(d1,mrp41) P! <Pt Ty )

+ Z ( ( Z A(B(r..rn+p/_1r’(dp/_1,T..Tn+p/_1)) ﬂEn(do,..,dp/))))

Trn41 EAn_,_l,]_(r), Tptp! —1 6An+p/_1’1(r..1‘n+p/_2),
’
Tp4+1<T (dg,r) Tn+p/71 <7',(dp17277'--7‘n+p/72)

+ Z A(B (rrn+1r'(d1, rrn+1)) N E,(do,. .. ,dp/))

Tn4+1€An+1,1(M);
41 <r'(dg,7)

+)\<B<rr’(d0,7‘)) ﬂEn(dg,...,dp/)).
Let, for i € [1, p],
(18) Xi(do,...,dp,n) =|X(Ep(do,...,d;)) — diX(En(do,-..,di—1))]-
Notice that X;(do,...,dp,n) =0if p=0 or d; € {0,1}. Let, for i € [1,p],

(19) Yi(do,...,dy,n) =

Z ( ( Z A(B(rrnH...rn+ir’(di,r...rn+i)) ﬁEn(do,...,dp))) ),

r€EAn+1 ™4i€Anti 1ty Tni—1)s
T <r'(dj 1,741 Tnpi—1)

and

(19) — bis Yo(do,...,dp,n) = Y X(B(rr'(do, 7)) N En(do,...,dp)) .
'I‘GAn+1

14



Definition 4.3. Let r'(r) denote the smallest element of A,, 1(r) for r € A,,.

Let, for i € N*, with Definitions 4.2 and 4.3,
(20) R;i(n) = Z ( ( ZA(B(rrn_H...rn+,~r’(r...rn+i)))) ),
r€Ant1 Thti€Anti, 1 (Trng1 . Tntio1)
and
(20) — bis Ry(n) = Z A (B(rr'(do,1))) -
TEAn+]_
Define, for i € [1, p],

(21) Zi(do,-..,dp,n) = Y (( 3 A(B(rrn_,_Twr'(di,rn_rnﬂ))))...),

r€EAn+1 ™n+i€Anti 1 (TR T 1),
Tn+i<rl(di71 ,T‘rn...r"+i71)

and

(21) — bis Zo(do,...,dp) = Y X(B(rr'(do,7))).
r€An 11

Observe that if p > 0,

(22) Z ( Z ( . Z /\(B(rrn+1 e rn+p))))

’I’EAnJ,_l Tn+1 EA'n.—l—l,l("’)’ T'n+peAn+p,1(T'Tn-l-l"'rn-l-p—l)v
Tn41 <r’(dg,r) Tn+p<7‘/(dp—lvr7‘n+l"'Tn-{-p—l)

—dp_1 Z ( Z ( Z A(B(rrn+1...rn+p_1))))

r€A+1 ™m41€A4n4+1,1(")s Tpyp—1€Antp—1,1("Tpy1-Tnyp—2),
rn+1<r’(d0,r) rn+p<r’(dp_2,rrn+1...rn+p_2)

S Zp_l(d(), e ,dp,n).

Then, from relations (17) to (22), if we put Z_1(dg,n) =0,

(23) (A (En(do; - -, dp)) = dpA (En(do, - - ;dp-1))]

p—1
< 0p#£0-0d,¢{0,1}- <2 <2Y¢(d0, e 7dp7n)) + Zp_1(do, - - - 7dp7n)>
=0
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p—1
< 5p7é0-5dp¢{0,1}- (2 (Z Rl(n)> + Zp_l(do, ce ,dp, n)) y
1=0

-~

W(do, .. .,dp,n)

where if P is a proposition, §p = 0 if P is false, 1 otherwise. Let (do, . .., d,, 1™, dy, ..., d}) =
(ag,...,a2p+m+1). From (17), (18), Definition 4.2 and repeated application of the triangle

inequality,
(24)  |AN(BEnldo, ... dp, 1™ dp, ..., d})) —do---dpdy - db|
P 2p+m+1
Z d(), . ,n)+ Z Xi(ag,...,a2p+m+1,n).
=1 i=p+m+1
From Proposition 1.1, Definition 4.3, for any integer m > 1, for any r € A,,,

/ m—1 r; k:p
> A(B(rpr (rp))) < > (H m+k) (p+E)(P? + (k= 1p+1)(p* + (k= 1)p)’

p=>r'(r) p=>r'(r)

and from Lemma 5.4, with ¢ = r/(r), we deduce from the above inequality that

ST A (B(rpr'( )))§<%>)\(B(TT'(T))).

p=r'(r)

Then, from definitions (20), (20)-bis and the above,

(25) Ri(n) < (%) Ria(n) << (%)iRo(”)-

It follows from (20), (21), (23), (24), and (25), that

(26) A (Bn(do, ... dp, 1™ dg, ... dy)) — do- -+ dpdg - - d|

p 2p+m+1
SZW(d07adlan)+ Z Wa(]a" y Qs T )
i=1 i=p+m-+1

<dp(p+ 1) Ro(n) + 2(p + 1)*Rpym11(n).

From Lemma 4.3, we have

(27) Ro(m) < 2R

16



Thus, from (25), (26), (27), we obtain

(28) |A(En(do, ... dp, 1™ dpy, ..., d))) —do -+ dpdgy -~ db)|

<10(p + DE*(k +1)? (2% +(p+1) (%)M (%)nm) ;

hence

(28 — bis) A (Bn(do, ... dp, 1™ dg, ...y dyy)) — do -+ - dpdg - - )|

1 n
<20(p+ 1)%k*(k +1)? <§> :
Now formula () of Theorem 4.2 is given in (28) — bis above, and () comes from (28) in

the case p = 0. This ends the proof of Theorem 4.2. [

Theorem 4.3. For almost all x, the sequence (t,(x))n>0 Is completely uniformly
distributed in [0,1], e.g for almost all x € [0,1] and every p > 0, the sequence
(tn(), ... tnip(T))n>0 is uniformly distributed in [0,1]PT1. More precisely, for all € > 0
and all (dg,dy,...,d,) € [0,1]PT1, one has

1 log N)z+e
N Z 1[0,d0[><-~~><[0,dp[(tn(m)a - 7tn+P(m)) = dodl s dp +0 <%> ) A —a.e.
n<N

Proof of Theorem 4.3. It is a direct application of Theorem 4.2, (a) and Theorem 11.3
from [Sch]. Indeed, given p > 0 and (dy,...,dp,) € [0,1]P*! from (), one has, if we let
E, = E,(do,...,dy),

MEL) = do..dy + O(5),

,where the constant in the O is bounded when (do,...,d,) is fixed, and E,(do,...,dp) N
Epntmip+i(do,....dp) = En(do,...,dp, 1™, dy,...,dp), for m large enough. Thus, we can
find a convergent series of non negative numbers (yz)x>0 such that v, = O’ (2%), and for
any n > 0 and t > 0,

MEn N Enyt) S MEp)AMEntt) + (AEn) + MEngt))ve + M Entt) Vn- n

However, using only (3), we have;

17



Corollary 4.1. For A — a.e z € [0, 1], the sequence (t,(z))
in [0,1] and for alle > 0, d € [0,1], and N € N*,

n>0 is uniformly distributed

AN, 2,d) = #{0<n < N; 0<tn(z) <d} = Nd+ O (\/N(log(N)) +) .

Proof. A straigthforward computation gives

1| M+N
1Y (oatta@) - d)| Ado) = o)
0 n=M+1
and the corollary results from [Ga-Ko]. |

Remark 4.1. In a forthcoming paper with A. Thomas, we shall give, as an application, an
alternative proof of this fact ([La-Th]). However, the present proof has the advantage that
it presents materials that can be quite directly used for proving the non independence, or

stochasticity, of the sequence (tn(-)) _ .
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