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Abstract
Given an ergodic dynamical system (X, T, µ), and U ⊂ X measurable with µ(U) >
0, let µ(U)τU (x) denote the normalized hitting time of x ∈ X to U . We prove that
given a sequence (Un) with µ(Un) → 0, the distribution function of the normalized
hitting time to Un converges weakly to some pseudo-distribution F if and only if
the distribution function of the normalized return time converges weakly to some
distribution function F̃ , and that in the converging case,

F (t) =

∫ t

0
(1 − F̃ (s))ds, t ≥ 0. (♦)

This in particular characterizes asymptotics for hitting times, and shows that the
asymptotic for return times is exponential if and only if the one for hitting times
is too.

1. Introduction

In the recent years there has been an interest in the statistics of entry and
return times. Typically a neighourhood of a point is considered which can be
either a metric ball or a ‘cylinder set’ associated with a measurable partition. In
accordance with a theorem due to Kac one then looks at the return times which
are normalised by the measure of the return set. A number of recent papers (e.g.
[A1], [A2], [AG], [BV1], [BV2], [C], [CG1], [CO], [GS], [H], [H1], [H2], [HSV],
[HV], [P], [PI]) have provided conditions under which this distribution converges
to the exponential distribution if the set is shrunk so that its measure converges
to zero. On a different note, Lacroix and Kupsa have shown that with a suitable
choice of return set one can realise any arbitrarily chosen limiting return time
distribution [L] and entry time distribution [K-L] (see Theorem 1).
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The purpose of this note is to show that limiting distributions for entry and
return times are intimately linked by the transformation (♦).

Let (X,B, µ) be a probability space, T :X → X a measurable transformation
that preserves µ, i.e. T ∗µ = µ. We also assume the dynamical system (X, T, µ)
to be ergodic.

For (measurable) U ⊂ X with µ(U) > 0 we define the return/entry time
function τU by

τU (x) = inf{k ≥ 1:T kx ∈ U}.

For x ∈ U , τU (x) denotes the return time. On the other hand if we refer
to τU (x) as a function on all of X then we call it the entry time function.
Poincaré’s recurrence theorem [K, Theorem 1’] then asserts that τU is µ-a.s. well
defined. We also have Kac’s theorem [K, Theorem 2’] according to which

∫
U

τU (x) dµ(x) =
∞∑

k=1

kµ(U ∩ {τU = k}) = 1.

Finer statistical properties of the variable µ(U)τU have been investigated, in
a rather large number of recent papers, where particular attention was given to
the study of weak convergence of µ(Un)τUn as µ(Un) → 0. See [AG] for a recent
survey in the mixing case.

We say a sequence of distribution functions Fn, n = 1, 2, . . . , converges
weakly to a function F (which might not be a distribution itselft) if F is in-
creasing and satisfies limn→∞ Fn(t) = F (t) at every point t of continuity of F .
(Notice that we require F to be increasing.) We will write Fn ⇒ F if Fn converges
weakly to F .

Given a U ⊂ X measurable with µ(U) > 0, we define

F̃U (t) = 1
µ(U)µ (U ∩ {τUµ(U) ≤ t})

FU (t) = µ({µ(U)τU ≤ t}).

Define

⎧⎪⎨
⎪⎩

F = {F : R → [0, 1], F ≡ 0 on ] −∞, 0], F increasing, continuous,
concave on [0, +∞[, F (t) ≤ t for t ≥ 0} ;

F̃ =
{

F̃ : R → [0, 1], F̃ increasing, F̃ ≡ 0 on ] −∞, 0],
∫ +∞
0

(1 − F̃ (s))ds ≤ 1
}

.

These functional classes appear in the following (Un is always assumed to be
measurable):
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Theorem 1. Let (X, T, µ) be an ergodic and aperiodic dynamical system. Then:
(a) [L] for any F̃ ∈ F̃ there exists a sequence {Un ⊂ X : n = 1, 2, . . . } such

that µ(Un) → 0 and F̃Un
⇒ F̃ .

(b) [K-L] for any F ∈ F , there exists {Un ⊂ X : n = 1, 2, . . . } such that
µ(Un) → 0 such that FUn

⇒ F .

In this note we prove the following rather unexpected and surprisingly un-
known result:

Main Theorem. Let (X, T, µ) be ergodic, and {Un ⊂ X : n ≥ 1} a sequence
of positive measure measurable subsets. Then the sequence of functions F̃Un

con-
verges weakly if and only if the functions FUn

converge weakly.
Moreover, if the convergence holds, then

(♦) F (t) =
∫ t

0

(1 − F̃ (s))ds, t ≥ 0,

where F̃ and F are the corresponding limiting distributions.

The only previous result in this direction was obtained in [HSV] where it is
shown that F̃Un

→ F̃ and F̃ (t) = 1− e−t for t ≥ 0 if and only if FUn
− F̃Un

→ 0.
Indeed the Main Theorem shows that the exponential distribution if the only
fixed point under the transformation (♦). We state a Corollary:

Corollary 2. (i) The asymptotic distribution for hitting times, if it exists, is
positive exponential with parameter 1 if and only if the one for return times is
too.

(ii) Parts (a) and (b) of Theorem 1 are equivalent.

2. Proof of the Main Theorem

For a (measurable) set U ⊂ X denote by GU (T ) = µ ({x ∈ X : τU (x) ≤ T})
and similarly G̃U (T ) = µ ({x ∈ U : τU (x) ≤ T}). If we denote Vk = {x ∈ U : τU = k}
then up to a zero measure set X is the disjoint union of the sets

⋃k−1
j=0 T jVk,

k = 0, 1, . . . . This in particular implies that

GU (T ) =
k∑

j=0

jµ(Vj) +
∞∑

j=k+1

kµ(Vj),

where k = [T ] (integer part). Since the function GU (T ) is constant on intervals
that don’t contain integers, we get that G′

U (T ) = 0 if T �∈ N and for k ∈ N one
has

G′
U (k) = δk(GU (k) − GU (k − 1)) = δk

∞∑
j=k

µ(Vj),
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where δk is the Dirac unit pointmass at k. Since G̃U (T ) =
∑[T ]

j=0 µ(Vj) we thus
obtain that

G′
U (T ) =

∞∑
k=0

δk(T )
(
µ(U) − G̃U (T )

)

Since FU (t) = 1
µ(U)GU (t/µ(U)) and F̃U (t) = 1

µ(U) G̃U (t/µ(U)), we thus obtain
that

F ′
U (t) = µ(U)

∞∑
k=0

δkµ(U)(t)
(
1 − F̃U (t)

)
.

If we denote by F̄U (t) the smallest piecewise linear function which is continuous,
concave on [0,+∞[ and greater or equal than FU , then

(�) F̄ ′
U

+(t) = 1 − F̃U (t), t ≥ 0,

where F̄ ′
U

+ denotes the right-hand side derivative. Notice also that

(��) ‖ FU − F̄U ‖∞≤ µ(U)

since FU has its discontinuities located at points µ(U), 2µ(U), . . . .

We continue with the proof of the Main Theorem:
(I) Let us assume there is a sequence of subsets Un ⊂ X so that µ(Un) → 0

and F̃Un ⇒ F̃ where F̃ ∈ F̃ . Since F̃ is increasing, this implies that F̃Un → F̃
Lebesgue almost surely on [0,+∞[. Whence, for given t ≥ 0, by the Lebesgue
dominated convergence theorem on [0, t] (F̃ ∈ [0, 1]), combining with (�) one has

F̄Un(t) =
∫ t

0

(1 − F̃Un
(s))ds →

∫ t

0

(1 − F̃ (s))ds =: F (t).

We put F (t) = 0 for t < 0. Since F̃ ∈ F̃ , it follows that F ∈ F .
Moreover, by (��), FUn(t) → F (t) for all t ∈ R (the convergence is in fact

uniform on compact subsets of R by [R, Theorem 10.8]).
Hence if F̃Un

⇒ F̃ , then (FUn
) converges weakly to the F associated to F̃ by

formula (♦).

Proving the reciprocal for the Main Theorem, we need the following:

Lemma 3. Let fn, n = 1, 2, . . . , be a sequence of concave functions defined on
a non-empty open interval I and assume that fn converges pointwise to a limit
function f . Then off an at most countable subset of I the sequence of derivatives
f ′

n converges pointwise to the derivative f ′ of f .

Proof of Lemma 3. By [R, Theorem 25.3], off an at most countable subset of I,
the functions fn, and f , are differentiable, as concave functions.
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Next, using the argument for the proof of [R, Theorem 25.7], but for a fixed x ∈
I rather than along a sequence of point xi or points xi in a closed bounded subset
of I, the convergence of the derivatives, when all defined, follows at once. �

(II) Let us now assume that FUn ⇒ F . Then [KL] implies that F ∈ F .
Whence by (�) and (��), we have, for t ≥ 0,

F̄Un(t) =
∫ t

0

F̄ ′
Un

+(s)ds =
∫ t

0

(1 − F̃Un(s))ds → F (t) (=
∫ t

0

F ′+(s)ds).

It now follows from Lemma 3 that off an at most countable subset Ω of ]0, +∞[,
the functions 1 − F̃Un(s) converge pointwise to F ′+(s). Put F̃ (s) := 1 − F ′+(s)
for s ∈ R.

It remains to show that F̃Un(s) → F̃ (s) at points s of continuity of F ′+.
Clearly if s /∈ Ω or s < 0 there is nothing to do. Else, for any s1 < s < s2 not in
Ω, we have

F̃ (s1) ≤ lim inf
n

F̃Un(s) ≤ lim sup
n

F̃Un(s) ≤ F̃ (s2),

and since Ω is dense in [0, +∞[, the conclusion follows. So F̃Un ⇒ F̃ = 1 − F ′+,
which ends the proof. �
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