
MERIT FACTORS AND MORSE SEQUENCES

T. Downarowicz♣, Y. Lacroix

Abstract. We show that Turyn’s conjecture, arising from the Theory of Error Cor-
recting Codes, has an equivalent formulation in Dynamical Systems Theory. In par-
ticular, Turyn’s conjecture is true if all binary Morse flows have singular spectra.
Our proof uses intermediate estimates for merit factors of products of words, and is
purely combinatorial.

Résumé. Nous montrons que la conjecture de Turyn, issue de la Théorie des Codes
Correcteurs d’Erreur, a une formulation équivalente en Théorie des Systèmes Dy-
namiques. En particulier, la première est vraie si tous les flots de Morse continus
binaires ont un spectre singulier. La preuve utilise des estimations intermédiaires
du facteur de mérite d’un produit de mots, et repose sur des méthodes purement
combinatoires.

Introduction

In the Theory of Error Correcting Codes [M-S], the basic object to deal with is
a binary code, which consists of a finite family of ±1-valued finite strings (or code
words). Their use in data transmission and radar systems require, for optimal effi-
ciency and/or minimal source detection, that certain positive real valued quantities,
the merit factors of the code words - to be defined below, be maximal.

These quantities are closely connected to L4-norms of trigonometric polynomials
associated to code words (see Lemma 0 in this introduction), and at once exhibit
connections with so-called “ultraflat” problems, well-known in Harmonic Analysis.
Such problems (with L4-norm replaced by L2-norm) have recently been shown to
have equivalent formulations in Dynamical Systems Theory [B], [Gu], which are
connected to a weak form of a still open question of S. Banach.

In this note we shall show that the same holds for L4-norm (Theorem 2). How-
ever, we use completely different techniques, which are purely combinatorial, and
require very little background on Dynamical Systems Theory. Some of our inter-
mediate computations (Theorem 1) give estimates for merit factors of products of
words.

Before entering the subject, we would like to point out to the reader’s attention
that several normed spaces shall be used hereafter : let us, for clarity, indicate them
:
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– the space C of complex numbers z, with conjugate z̄, and modulus |z|;
– the spaces Lp (p ≥ 1) of the multiplicative group {|z| = 1} equipped with

Lebesgue one-dimensional measure (its normalized Haar measure), used essentially
for trigonometric polynomials;

– the spaces `p = `p(N) of complex valued sequences, with usual `p-norm;
– the spaces Lp(µ), where µ is a Borel probability measure on some abstract

compact metric space X.

Let us now introduce the basic definitions :

Definition 1. Let A = A(0)A(1)...A(a − 1) ∈ Ca, a ∈ N (such A will be called a
word). The aperiodic autocorrelation function of A is defined on {0, 1, ..., a− 1} by

ΦA(n) =
1
a

a−1−n∑

k=0

A(k)A(k + n).

The word A is normalized if ΦA(0) = 1 (each binary word is automatically normal-
ized).

The values of ΦA give rise to the following parameter:

Definition 2. The merit factor of A is 1
2MA

, where

MA =
a−1∑
n=1

|ΦA(n)|2.

If A is a normalized word, we define the trigonometric polynomial

PA(z) =
1√
a

a−1∑
n=0

A(n)zn.

Lemma 0. If A is a normalized word then ||PA||2 = 1 and 2MA = ||PA||44 − 1.

Proof. Write PA(z) = 1√
a

∑a−1
n=0 A(n)zn. Then

|PA(z)|2 =
1
a

a−1∑

n=−(a−1)

(
∑

0≤s,t<a,
s−t=n

A(s)A(t))zn =
a−1∑

n=−(a−1)

B(n)zn,

where B(n) = 1
a

∑
0≤s,t<a,

s−t=n
A(s)A(t) equals ΦA(n) if n ≥ 0, and ΦA(n) otherwise.

Hence ||PA||2 =
√

B(0) =
√

ΦA(0) = 1 if A is normalized.
Next, |PA(z)|4 =

∑2(a−1)
n=−2(a−1)(

∑
0≤|s|,|t|<a,

s+t=n
B(s)B(t))zn, thus

||PA||44 =
∑

0≤|s|,|t|<a,
s+t=0

B(s)B(t)

= |B(0)|2 + 2
∑a−1

s=1 B(s)B(s)
= 1 + 2MA.

¤
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The above mentioned interest in applications is to produce code words having
as big as possible merit factor, or, equivalently, by Lemma 0, trigonometric poly-
nomials with L2-norm equal to 1 and L4-norm as close as possible to 1.

Highest merit factors within binary words are obtained for so-called Barker se-
quences, for which the aperiodic autocorrelation function assumes lowest possible
values, i.e., 0 for even arguments, and ±1/a for the odd ones, which leads to largest
possible merit factor a2/(a− 1) for that length a of a binary word. Unfortunately,
the longest Barker sequence identified is

1 −1 1 −1 1 1 −1 −1 1 1 1 1 1.

What is “even worse”, the above Barker sequence has the largest merit factor 14.08
ever known [G]. In [G], it was conjectured that this number can not be improved.
Using theoretical methods aided by fast computer programs Barker sequences of
lengths between 14 and 1898884 have been proved not to exist [E-K]. The possible
lengths of Barker sequence have also been restricted seriously [E-K].

Nobody has proved yet that the merit factors of binary words are bounded (the
hypothesis on boundedness is called the Turyn’s conjecture, or, equivalently, the
Erdös L4-norm conjecture [S-S]), neither that there exist only finitely many Barker
sequences.

We refer the reader to [C-S], [H-J-J], and [M-S] for more information concerning
the merit factor problem.

The merit factor of a product of words

This section contains the computational results of this note.

Let A = A(0) . . . A(a − 1) and B = B(0) . . . B(b − 1) be two words. We define
their product as the word A×B, of length ab, by

A×B(s + at) = A(s)B(t), 0 ≤ t < b, 0 ≤ s < a.

Lemma 1. Let A = A(0) . . . A(a−1) and B = B(0) . . . B(b−1) be two normalized
words. Let 0 ≤ n ≤ ab− 1, n = s + at, 0 ≤ s ≤ a− 1 and 0 ≤ t ≤ b− 1. Then

ΦA×B(n) = ΦA(s)ΦB(t) + ΦA(a− s)ΦB(t + 1)

(with the convention that ΦA(a) = 0). In particular, A×B is normalized.

Proof. Let 0 ≤ k ≤ ab − 1 − n. We have k = i + aj for some 0 ≤ i ≤ a − 1
and 0 ≤ j ≤ b − 1, where either i + s ≤ a − 1 (then j + t ≤ b − 1) or i + s ≥ a
(then j + t ≤ b − 2). For fixed n we denote the sets of k’s of the first and second
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above cases by K0 and K1, respectively. We have

ΦA×B(n) =
1
ab

ab−1−n∑

k=0

(A×B)(k)(A×B)(k + n) =

1
ab

∑

k∈K0

A(i)B(j)A(i + s)B(j + t) +
1
ab

∑

k∈K1

A(i)B(j)A(i + s− a)B(j + t + 1) =

1
ab

a−1−s∑

i=0

b−1−t∑

j=0

A(i)A(i + s)B(j)B(j + t)+

1
ab

a−1∑

i=a−s

b−2−t∑

j=0

A(i)A(i + s− a)B(j)B(j + t + 1) =

1
a

a−1−s∑

i=0

A(i)A(i + s)
1
b

b−1−t∑

j=0

B(j)B(j + t)+

1
a

a−1−s′∑

i′=0

A(i′)A(i′ + s′)
1
b

b−1−t′∑

j=0

B(j)B(j + t′) =

ΦA(s)ΦB(t) + ΦA(s′)ΦB(t′),

by change of indices s′ = a− s, i′ = i + s− a, t′ = t + 1. ¤

Theorem 1. The following inequalities hold for normalized words:

MA + MB + 2MAMB − 2MA

√
M2

B + MB

≤ MA×B ≤
MA + MB + 2MAMB + 2MA

√
M2

B + MB .

Proof. Applying Lemma 1, we obtain

MA×B =
ab−1∑
n=1

|ΦA×B(n)|2 =
a−1∑
s=1

b−1∑
t=1

∣∣∣ΦA(s)ΦB(t) + ΦA(a− s)ΦB(t + 1)
∣∣∣
2

+

b−1∑
t=1

|ΦB(t)|2 +
a−1∑
s=1

∣∣∣ΦA(s) + ΦA(a− s)ΦB(1)
∣∣∣
2

, (1)

the last two single sums representing the terms of the double sum for s = 0 and for
t = 0, respectively. Developing squared sums and applying the equality ΦB(b) = 0
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where necessary, we obtain:

MA×B =
a−1∑
s=1

|ΦA(s)|2
b−1∑
t=1

|ΦB(t)|2 +
a−1∑
s=1

|ΦA(a− s)|2
b−2∑
t=1

|ΦB(t + 1)|2+

2Re
a−1∑
s=1

ΦA(s)ΦA(a− s)
b−1∑
t=1

ΦB(t)ΦB(t + 1)+

b−1∑
t=1

|ΦB(t)|2 +
a−1∑
s=1

|ΦA(s)|2 +
a−1∑
s=1

|ΦA(a− s)|2|ΦB(1)|2+

2Re
a−1∑
s=1

ΦA(s)ΦA(a− s) ΦB(1) = Σ1 + Σ2 + Σ3 + Σ4 + Σ5 + Σ6 + Σ7 (2)

Clearly, Σ1 = Σ2 + Σ6 = MAMB , Σ4 = MB , Σ5 = MA. Further, estimating the
inner product of two vectors by the product of their lengths, we obtain

∣∣∣∣∣
a−1∑
s=1

ΦA(s)ΦA(a− s)

∣∣∣∣∣ ≤ MA and

∣∣∣∣∣
b−1∑
t=0

ΦB(t)ΦB(t + 1)

∣∣∣∣∣ ≤
√

MB + 1
√

MB ,

hence, using ΦB(0) = 1, we have |Σ3 + Σ7| ≤ 2MA

√
M2

B + MB and the assertion
is proved. ¤

Corollary 1. The sums Σ5, Σ6, Σ7 defined in the preceding proof satisfy

Σ5 + Σ6 + Σ7 ≥ MA(1− |ΦB(1)|)2.

Proof. Σ6 = MA|ΦB(1)|2, Σ7 ≥ −2MA|ΦB(1)|. ¤

Corollary 2. Another possible lower estimate for MA×B is

MB + MA(1− 2|ΦB(1)|).

Proof. Use Σ3 ≥ −2MAMB . ¤

Dynamical Systems

Let us assume that we are given a triple (X, T, µ) where X is a compact metric
space, T : X → X is a homeomorphism, and µ is a Borel probability measure on
X such that Tµ = µ (the existence of at least one such T -invariant measure is well
known).

Then we consider a unitary operator UT : L2(µ) → L2(µ) defined by UT (f) =
f ◦ T . The measure µ is called ergodic if all UT -invariant functions in L2(µ) are
constants. Ergodic measures are characterized as the extreme points of the (convex)
set of all T -invariant measures.

The dynamical system (X, T ) is called uniquely ergodic if there exists only one
T -invariant measure µ. Clearly, in this case µ is ergodic.
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Spectral preliminaries.
We now provide the minimum background in Spectral Theory of Unitary Oper-

ators, necessary for the purposes of this note.
Consider a unitary operator U on a separable Hilbert space H (in our case this

will be the operator UT on L2(µ)). Due to the classical Bochner-Hergoltz theorem,
for each element (function) f ∈ H, we can identify its spectral measure µf on the
unit circle T = {z ∈ C : |z| = 1}. The measure µf is determined by the property
that for every n ∈ N ∫

T
zndµf =

∫

X

fUn(f)dµ.

The above numbers are denoted by µ̂f (n) and called the Fourier coefficients of µf .
Another classical theorem (based on a theorem of Wiener) assures that there

exists a decomposition
H =

⊕

i∈E

Hi,

where E is an interval of integers [0,m) or [0,∞), and Hi is the closed linear
invariant subspace of H generated by a single element fi

Hi = lin{Un(fi) : n ∈ Z}.
Moreover, we can organize the above decomposition so that for each i ∈ E, i > 0,
µfi is absolutely continuous with respect to µfi−1 . The cardinality m (or ∞) of E
is called the spectral multiplicity of U . The above sequence of spectral measures
(µfi)i∈E , more precisely their types (by the type of a measure one understands the
equivalence class with respect to absolute continuity) provide a complete spectral
isomorphism invariant, i.e., if two unitary operators have the same spectral multi-
plicity and each of the above spectral measures for one of them is equivalent to the
corresponding measure of the other then the operators are conjugate via an isom-
etry. This explains why spectral multiplicity and spectral types are so important.

We say that U has simple spectrum if m = 1. The operator U has Lebesgue
spectrum if µf0 is equivalent to the Lebesgue measure λ on the circle. Similarly,
we say that U has singular spectrum if µf0 (and hence µfi for all i ∈ E) is singular
with respect to λ. For example, if the sequence (µ̂f (n))n∈N is square summable
(which we denote by µ̂f ∈ `2) then the measure µf is absolutely continuous with
respect to λ and has density

dµf

dλ
= µ̂f (0) +

∑

n∈N
2Re(µf (n)zn),

which belongs to L2(λ).
The same spectral properties are defined for dynamical systems (X,T, µ) by

referring to the induced unitary operator UT on L2(µ). The case of a uniquely
ergodic dynamical system is the most convenient here, because then there is no
need in specifying which invariant measure is being considered.

We refer the interested reader to [P] for further information concerning Dynam-
ical Systems Theory.

Morse binary flows.
Again, only minimum necessary information will be provided here. We refer for

further information to [K1] or [Gu].
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Definition 3. A sequence of binary words B1, B2, ... satisfying Bp(0) = 1 for any
p ∈ N, determines a (one-sided, generalized) Morse sequence A as the coordinate-
wise limit of the words Ap = B1 × B2 × · · · × Bp (convergence is granted by the
condition Bp(0) = 1).

Every such Morse sequence A can be easily extended to a bi-infinite sequence
A′ such that every word which appears in A′ also appears in its positive part A.
For example, at each stage we can extend Ap by attaching on it’s left another copy
of Ap. The obtained words ApAp extend over the coordinates [−ap, ap) (with zero
coordinate approximately in its center). In fact, they may not converge, but any
convergent subsequence provides a desired bi-infinite extension; it is not hard to see
that each word ApAp appears further in the positive part A (the last statement fails
for some periodic Morse sequences, but these are easy to extend by periodicity).

Next we consider the shift transformation S on the set of bi-infinite sequences
given by Sx(n) = x(n + 1) (n ∈ Z), and we define a Morse flow as the dynamical
system (X,S), where X = {SnA′ : n ∈ Z} and A′ is a bi-infinite extension of a
Morse sequence A.

Morse flows have been extensively studied for their dynamical and spectral prop-
erties. For us it is important to know the following facts:

Fact 1. (see [I-L] and the reference therein) A sufficient condition for a Morse
flow to be uniquely ergodic is that the frequencies of both letters −1 and 1 in the
words Bp are bounded away from zero.

Fact 2. (see e.g. [Kw]) A uniquely ergodic binary Morse flow has simple spectrum.

(Unique ergodicity is not an essential assumption here. There always exists an
invariant measure with respect to which the system has simple spectrum. Our
assumption only assures that we are not looking at a wrong invariant measure.)

Weak form of the Banach’s question.
Not all possible spectra of unitary operators can be realized by unitary operators

arising from dynamical systems. One of the central problems in ergodic theory is to
describe the admissible spectra. A still unsolved question is that due to S. Banach,
addressing to the existence of simple Lebesgue spectrum for some (X, T, µ).

Does there exist an ergodic (X, T, µ) with simple spectrum and a Lebesgue com-
ponent? This question is still open in Dynamical Systems Theory, also. Even if
simple pure Lebesgue spectrum was not admitted for transformations (i.e., if the
answer to the Banach’s question was negative) one might still try to construct a
dynamical system with a simple spectrum consisting e.g. of the Lebesgue measure
plus some atoms.

The answer to this weak form of the Banach’s question is unknown except for
some very special recently examined cases leading to certain generalized Riesz prod-
ucts proved to be almost surely singular (with respect to an appropriate natural
probability on families of dynamical systems, see [C-N], [D-E], [Gu]).

There is still hope to obtain a positive answer by an effective construction. Vari-
ous Morse flows exhibiting coexistence of numerous measure theoretic and spectral
phenomena have been constructed in recent years (e.g. [K2], [L1], [L2], [K-L]). Thus
it seems natural to search for solution of this problem within the class of Morse
flows.

There have been attempts made toward constructing an appropriate binary
Morse flow (X,S, µ) such that the “zero coordinate function” f(x) = x(0) (x ∈ X)
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has absolutely continuous spectral measure, which would be verified by the condi-
tion µ̂f ∈ `2. The above condition is even stronger than we need - it says that µf

is absolutely continuous and has density in L2(λ), while having density in L1(λ)
would be sufficient. But there is no convenient criterion allowing to verify the L1

property by looking only at the Fourier coefficients. In what follows we will be using
the L2 condition, and we prove that the success of such an attempt fully depends on
the solution of the merit factor problem. (In the introduction we have mentioned
the L4-norm of certain polynomials. There is no mistake. Roughly speaking, the
density of the spectral measure of the obtained Morse flow corresponds to the limit
of squares of the polynomials PAp(z), hence its L2-norm exists if and only if the
L4-norms of the polynomials converge).

Turyn’s conjecture and spectral properties of Morse flows

First we need to define the merit factor for one-sided infinite sequences.

The autocorrelation function of an infinite sequence A = A(0)A(1)A(2)... ∈ CN
is defined for each n ∈ N as the limit ΦA(n) = lima→∞ ΦAa

(n), where Aa is the
finite word A(0)A(1)...A(a− 1). Of course, there is no guarantee that such a limit
exists. If ΦA(n) are well defined for all n ∈ N, then we let

MA =
∞∑

n=1

|ΦA(n)|2.

Lemma 2. If a Morse sequence A is obtained from normalized words B1, B2, ... as
in Definition 3, and if MA is well defined then MA = limp MAp .

Proof. The inequality MA ≤ limMAp follows at once from the convergence ΦAp(n) →
ΦA(n) for each n. The converse inequality is trivial if MA = ∞. The case MA < ∞
is a bit more complicated.

First observe that, by grouping:

B′
1 = B1 ×B2 × ...×Bp1 ,

B′
2 = Bp1+1 ×Bp1+2 × ...×Bp2 ,

...

we can assume that the lengths ap of the words Ap grow sufficiently fast, so that
the values of the autocorrelation function for all arguments up to ap evaluated for
A and for Ap+1 are almost the same. More precisely, we can assume that

ap∑
n=1

|ΦAp+1(n)− ΦA(n)|2 → 0,

which implies in particular that the sums

Sp =
ap−1∑
n=1

|ΦAp+1(n)|2

converge to MA.
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We shall show that ΦBp
(1) → 0. Indeed, if not, then |ΦBp

(1)| ≥ δ for some δ > 0
and infinitely many indices p. But we have, by Lemma 1, ΦAp+1(ap) = ΦBp+1(1)
(here t = 1 and s = 0), which implies that |ΦA(ap)| is greater than δ/2 for infinitely
many indices p, thus MA = ∞, a contradiction.

To conclude, recall that Ap+1 = Ap × Bp+1 and observe that Sp is the part
corresponding to t = 0 in the sum representing MAp×Bp+1 , i.e., to the last item
of formula (1) which then becomes Σ5 + Σ6 + Σ7 in (2). By Corollary 1, this is
estimated from below by MAp

(1 − |ΦBp+1(1)|)2 which converges to the same limit
as MAp

. We have proved that MA = lim Sp ≥ limMAp
, as desired. ¤

We are in a position to state our main result.

Theorem 2. There exist binary words with arbitrarily large merit factors if and
only if there exists a binary Morse flow (X, S, µ) such that the Fourier transform
of the spectral measure µf of the “zero coordinate function” belongs to `2. In par-
ticular, the spectrum of (X, S, µ) is then simple and not purely singular.

Proof. Let B1, B2, ... be finite binary sequences such that MBp
→ 0. By choosing

a subsequence we can assume that the speed of the convergence is sufficient, the
precise meaning of which will be specified later. We can also assume Bp(0) = 1,
since this amounts only to multiplying (if necessary) a Bp by Bp(0), which does
not change MBp

. Let A be the Morse sequence obtained from (Bp).
Observe that from the assumption MBp → 0 it follows automatically that the

frequencies of −1 and 1 in Bp both converge to 1/2, hence they are bounded away
from zero, which in turn implies that the generated Morse flow is uniquely ergodic
(Fact 1).

Thus we have a uniquely ergodic flow (X, S, µ), with simple spectrum (Fact 2).
Define f by f(x) = x(0) (x ∈ X). Clearly f ∈ L2(µ). The Fourier coefficients of
the spectral measure µf of f are

µ̂f (n) =
∫

f Un
S (f)dµ

(note that Un
S (f)(x) = x(n)). Since f is continuous, and by unique ergodicity, we

can evaluate the integrals by taking averages along the trajectory of the element A:

µ̂f (n) = lim
a→∞

1
a

a−1∑

k=0

A(k)A(k + n) = ΦA(n),

and these limits exist for all n.
In order to have µ̂f ∈ `2, it suffices that MA be finite, because

√
MA is the `2

norm of the sequence (ΦA(n)). By Lemma 2, it now suffices to have MAp bounded.
Finally, from the upper estimate of Theorem 1 applied to Ap+1 = Ap ×Bp+1, it is
seen that this goal can be achieved by assuming a sufficient speed of the convergence
MBp → 0, which we can do (this is how we specify the meaning of a “sufficient
speed”).

Conversely, as shown in the proof of Lemma 2, the convergence ΦBp(1) → 0
is necessary for MA to be finite. Then by Corollary 2, it is seen that if MBp are
bounded away from zero then MAp diverge, hence MA = ∞. In other words, if
merit factors of all binary words are bounded, then there are no chances to con-
struct a binary Morse flow for which µ̂f ∈ `2. We have established the announced
equivalence. ¤
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Corollary 3. If all continuous binary Morse flows have singular spectra (in partic-
ular if the weak version of Banach’s question has negative answer) then the merit
factors of binary words are bounded (the Turyn’s conjecture holds), in particular
there are only finitely many Barker sequences.
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