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Abstract. Given a number system S =
(
(0, 1), Tj , (Jn,j)n∈Ej

)
j≥0

, we define a measurable map-

ping ΦS : (0, 1)N → (0, 1) such that λ∞(Φ−1
S (A)) = λ(A), A ∈ B(0,1). A measurable section(

tn(.)
)
n≥0

is defined for ΦS ; tn(.) has uniform distribution for any n ≥ 0. Conditions relative to

λ–a.e. repartition properties of
(
tn(.)

)
n≥0

are studied. Applications to (α, γ)–expansions, Cantor

products and Continued fractions are given.

0. INTRODUCTION.

N denotes the set of natural numbers, and N∗ = N \ {0}. In the following, when we consider
sub-intervals of the unit interval, (a, b) stands for one of the intervals ]a, b[, [a, b[, [a, b], ]a, b].

For p ∈ N∗, we denote by B(0,1)p the Borelian σ-algebra of (0, 1)p, and λp =
p−1⊗

i=0

λ, where λ is

the Lebesgue measure on (0, 1). Furthermore, let λ∞ =
⊗

i∈N
λ be the product measure on B(0,1)N .

If u ∈ (0, 1)N, u = (u0, . . . , un, . . . ), and p ∈ N∗, let u(p) =
(
(ui, . . . , ui+p−1)

)
i≥0

.
We call a triple

(
(0, 1), T, (Jn)n∈E

)
a fibered system if T : (0, 1) → (0, 1) is measurable,

(Jn)n∈E , is a partition of (0, 1) into intervals with positive length, and T|Jn
(restriction) is one

to one (cf [11]).

A sequence of fibered systems S =
(
(0, 1), Tj ,

(
Jn,j

)
n∈Ej

)
j≥0

is called a Number System, if

the following conditions hold:





(A) ∀j ≥ 0,
(
(0, 1), Tj , (Jn,j)n∈Ej

)
is a fibered system, and T0 = Id(0,1);

(B)




∀j ≥ 1, put Cj = Tj−1 ◦ · · · ◦ T0; let B(n1, . . . , np) :=
{x, ∀i ∈ [1, p], Ci(x) ∈ Jni,i}. Then if B(n1, . . . , np) 6= ∅, assume
B(n1, . . . , np) = (an1...np , bn1,... ,np) and λ(B(n1, . . . , np)) > 0;

(C)
{

If (ni)i≥1 ∈
∏+∞

i=1 Ei, and for any p ≥ 1, B(n1, . . . , np) 6= ∅,
then

⋂
p≥1 B(n1, . . . , np) is a singleton.

If S is a number system, then for any x ∈ (0, 1), there exists a unique
(
ni(x)

)
i≥1

∈ ∏
i≥1 Ei such

that {x} = ∩p≥1B(n1(x), . . . , np(x)). Conversely, if (ni)i≥1 ∈
∏

i≥1 Ei is such that ∩p≥1B(n1, . . . , np) 6=
∅, it defines a unique element x ∈ (0, 1) satisfying (ni(x))i≥1 = (ni)i≥1, given by {x} =
∩p≥1B(n1, . . . , np). The sequence (ni(x))i≥1 is the digital representation of x.
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2 NUMBER SYSTEMS AND REPARTITION

This definition of a number system is not the most general one would expect, since it could
be necessary to delete some subset from (0, 1). However, the results that follow still hold if we
do so.

As usual, realizable finite sequences in
∏p

i=1 Ei (or infinite sequences in
∏+∞

i=1 Ei) are defined
by 




Rp(S) = {(n1, . . . , np) ∈
∏p

i=1 Ei, B(n1, . . . , np) 6= ∅},

R(S) = {(ni)i≥1 ∈
∏+∞

i=1 Ei, ∀p ≥ 1, B(n1, . . . , np) 6= ∅}.
(1)

Let S be a number system: with the notations above, let ΦS : (0, 1)N → (0, 1) be defined as
follows. For u = (u0, . . . , un, . . . ) ∈ (0, 1)N one first defines the sequence (ni)i≥1: choose n1 such
that u0 ∈ B(n1). Then inductively, given B(n1, . . . , nm), choose nm+1 such that

(1− um)an1...nm
+ umbn1...nm

∈ B(n1, . . . , nm, nm+1). (2)

Condition (C) ensures the existence of a unique x ∈ (0, 1) such that (ni(x))i≥1 = (ni)i≥1. Finally,
put ΦS(u) = x.

Now define (tn : (0, 1) → (0, 1))n≥0 by

{
t0(x) = x = x−a∅

b∅−a∅
where a∅ = 0, b∅ = 1;

tm(x) = x−an1...nm(x)

bn1...nm(x)−an1...nm(x)
, m ≥ 1.

(3)

One has ΦS ((tn(x))n≥0) = x. Indeed, with (C), (2) and (3), this follows from

{
x ∈ Jn1(x),1,
(1− tm(x)) · an1(x)...nm(x) + tm(x) · bn1(x)...nm(x) = x ∈ B(n1(x) . . . nm+1(x)).

Thus,
(
tn(.)

)
n≥0

is a measurable section for ΦS .

Remark 0.1. Assume Tj = T, j ≥ 1. Then define σ(u) = (un+1)n≥0, the shift transformation
on (0, 1)N. Obviously, the relation ΦS ◦ σ = T ◦ ΦS holds λ∞-a.e. on (0, 1)N if and only if on
Jn,j := Jn = (an, bn), T (x) = x−an

bn−an
, n ∈ E := Ej . Accordingly, tn(.) = Tn, n ≥ 0. Note that

for such transformations, λ(T−1(B)) = λ(B), B ∈ B(0,1).

The following statement holds: if ΦS(u) = x, then for any m ≥ 0

|um − tm(x)| ≤ λ
(
B(n1 . . . nm+1(x))

)

λ
(
B(n1 . . . nm(x))

) , (4)

where B(∅) = (a∅, b∅) = (0, 1).
The paper is organized as follows. Part 1 states the main elementary property of ΦS (THEO-

REM 1.1.) and uniform distribution of the random variable tn(.), n ≥ 0 (PROPOSITION 1.1.).
A criterion for two sequences to be simultaneously completely uniformly distributed (respec-
tively for two such to have same logarithmic p-dimensional discrepancies for all p) is given in
LEMMA 1.1. (respectively LEMMA 1.2.). In Remark 1.1. we apply THEOREM 1.1. to recover
a previous result of [1].

Part 2 gives a sufficient condition for the sequence
(
tn(.)

)
n≥0

to be λ-a.e. completely uni-
formly distributed (THEOREM 2.1.), and another one for it to have λ-a.e. infinite p-dimensional
logarithmic discrepancy, for any p (THEOREM 2.2.). These properties are in fact carried over
from the corresponding ones on (0, 1)N, using ΦS .
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Part 3 gives applications of parts 1 and 2, in the cases of (α, γ)-expansions (cf [1]), generalized
Cantor products (cf [7]), and continued fractions (cf [5]). One can find for Engel or Sylvester series
improvements of the previous results concerning uniform distribution of the relevant sequences(
tn(.)

)
n≥0

(cf [11, Chapter 11]). THEOREM 3.1. gives a sufficient condition for the sequence(
tn(.)

)
n≥0

to be λ-a.e. uniformly distributed; this applies to β-expansions (cf [9]) and continued
fractions.

The authors would like to express their gratitude to the referee, Professors F. Schweiger and
R. F. Tichy for valuable remarks and suggestions.

1. PRELIMINARY RESULTS AND DEFINITIONS.

The map ΦS satisfies

THEOREM 1.1. For any A ∈ B(0,1), λ∞
(
Φ−1
S (A)

)
= λ(A).

Proof. Since GS = {B(n1, . . . , np), (n1, . . . , np) ∈ Rp(S), p ≥ 1} is a generating sub-system of
B(0,1) (see (B) and (C)), the above equality holds if it does on elements of GS . Now observe that
if (n1, . . . , np) ∈ Rp(S) ((1), (2), (B)),

Φ−1
S

(
B(n1, . . . , np)

)
=

(
p∏

i=1

B(n1, . . . , ni)− an1...ni−1

bn1...ni−1 − an1...ni−1

)
× (0, 1)N.

The proof of THEOREM 1.1. follows immediately.

Remark 1.1. Let U denote the set of uniformly distributed sequences in (0, 1). In the case

of Cantor series representation (x =
∑+∞

i=1
εi(x)
q1...qi

, εk(x) ∈ {0, . . . , qk − 1}, Q = (qk)k≥1 ∈
(
N∗ \ {1})N

∗
), let ΦQ = ΦS where S is the number system associated with the Cantor series to

”base” Q. Theorem 2 of [1] states that if on subsets of U , we define λQ(A) = λ(ΦQ(A)) when
ΦQ(A) ∈ B(0,1), and take all possible sequences Q, then the only measure consistent with all the
λQ on the corresponding subsets of U is λ∞. If we observe (with notations from the proof of

THEOREM 1.1.) that {Φ−1
Q (GQ), Q ∈ (

N∗ \ {1})N
∗
} generates BU , this statement results from

THEOREM 1.1. and the fact that ΦQ is onto.

PROPOSITION 1.1. For any n ≥ 0, the random variable tn(·) has uniform distribution, e.g.
if d ∈ (0, 1), and Wn(d) = {x ∈ (0, 1), tn(x) ∈ (0, d)}, then λ(Wn(d)) = d.

Proof. Clearly, given (n1, . . . , np) ∈ Rp(S), we have λ (Wn(d) ∩B(n1, . . . , np)) = dλ(B(n1, . . . , np))
((1), (3)). With

λ(Wn(d)) =
∑

(n1,... ,np)∈R(S)

λ(Wn(d) ∩B(n1, . . . , np)),

and ∑

(n1,... ,np)∈R(S)

λ(B(n1, . . . , np)) = 1,

the proof of PROPOSITION 1.1. follows.
Let us now introduce definitions for linear and logarithmic discrepancies associated to a se-

quence u ∈ (0, 1)N (cf [6]).
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DEFINITION1.1. Let u ∈ (0, 1)N, p ≥ 1. Let Pp = {(a1, b1) × . . . × (ap, bp), 0 ≤ ai ≤ bi ≤
1, 1 ≤ i ≤ p} be the set of p-cubes in (0, 1)p. Let N ∈ N∗ and P ∈ Pp; then define




Ep(u,N, P ) = #{i < N, u
(p)
i ∈ P} − λp(P ) ·N,

Dp(u,N) = supP∈Pp
|Ep(u, N, P )| ,

Dp(u) = lim supN→+∞
1
N Dp(u,N).

Dp(u) is called the p-dimensional discrepancy (or linear discrepancy) of u.

DEFINITION 1.2. With the same notations as in the above definition, let

D`
p(u) = lim sup

N→+∞

1
(log N)p

Dp(u,N).

D`
p(u) is called the p-dimensional logarithmic discrepancy of u.

DEFINITION 1.3. A sequence u ∈ (0, 1)N is completely uniformly distributed (abbreviate
c.u.d.) if for any p ≥ 1, Dp(u) = 0.

Here are the criterions announced in the Introduction about discrepancies:

LEMMA 1.1. Let u, v ∈ (0, 1)N. If 1
N

∑
i<N |ui − vi| −→N→+∞ 0, then for all p ≥ 1

(Dp(u) = 0) ⇔ (Dp(v) = 0) .

Proof. Using the Weyl criterion (see [6]), it is enough to prove for any h ∈ Zp, h 6= (0, . . . , 0),
that if

lim
N→+∞

1
N

N∑

j=1

e2iπ<h,u
(p)
j > −→N→+∞ 0,

the limit relation still holds when u is replaced by v.
But for any p ≥ 1, there exists a constant Cp > 0 such that for any h ∈ Zp and j ≥ 1

∣∣∣e2iπ<h,u
(p)
j > − e2iπ<h,v

(p)
j >

∣∣∣ ≤ Cp. max
1≤t≤p

|ht| ·



j+p−1∑

k=j

|uk − vk|

 .

The result then follows immediately, and the proof of LEMMA 1.1. is complete.

LEMMA 1.2. Let u, v ∈ (0, 1)N be such that |um − vm| = O(e−m2
). Then for all p ≥ 1,

D`
p(u) = D`

p(v).

Proof. Take notations from DEFINITION 1.1.. Let P ∈ Pp and N ∈ N∗; then {i < N, u
(p)
i ∈

P} ⊂ {i <
√

log N} ∪ {√log N ≤ i < N, u
(p)
i ∈ P}. By the hypothesis, there exists C > 0 such

that |ui− vi| < Ce−i2 , i ∈ N. If i ≥ √
log N , then e−i2 < 1

N , and if u
(p)
i ∈ P =

∏p
i=1(ai, bi), then

v
(p)
i ∈ P ′ =

∏p
i=1(ai − C

N , bi + C
N ). Thus we have

#{i < N, u
(p)
i ∈ P} ≤ 1 +

√
log N + #{i < N, v

(p)
i ∈ P ′}.

One can find a constant K > 0 such that for N large enough, N |λ(P ′)− λ(P )| ≤ K. Therefore
there exists a constant Fp > 0 such that

Ep(u,N, P ) ≤ Ep(v,N, P ′) + Fp

√
log N ≤ Dp(v, N) + Fp

√
log N.

Thus Dp(u,N) ≤ Dp(v,N) + Fp

√
log N . Since the problem is symmetrical in sequences u and v,

we have obtained for N large enough,

|Dp(u,N)−Dp(v,N)| ≤ Fp

√
log N.

The proof of LEMMA 1.2. follows immediately.
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2. λ-a.e. DISTRIBUTION OF
(
tn(.)

)
n≥0

.

THEOREM 2.1. Assume

λ

{
x,

1
N

N∑

i=1

λ(B(n1, . . . , ni+1(x)))
λ(B(n1, . . . , ni(x)))

−→N→+∞ 0

}
= 1.

Then λ-a.e. the sequence
(
tn(x)

)
n≥0

is completely uniformly distributed.

Proof. Let

Ω(S) =

{
x,

1
N

N∑

i=1

λ(B(n1, . . . , ni+1(x)))
λ(B(n1, . . . , ni(x)))

−→N→+∞ 0

}
,

Ω∗(S) =
{

x,
(
tn(x)

)
n≥0

is c.u.d.
}

.

These sets belong to B(0,1). Since u ∈ Φ−1
S (x) implies |ui− ti(x)| ≤ λ(B(n1,... ,ni+1(x)))

λ(B(n1,... ,ni(x))) (see (4)), it
follows from LEMMA 1.1. that for any p ≥ 1, Dp

(
(tn(x))n≥0

)
= Dp(u) when x ∈ Ω(S). Thence

Φ−1
S

(
Ω(S)

⋂
Ω∗(S)

)
= Φ−1

S (Ω(S))
⋂
{u ∈ (0, 1)N, u is c.u.d.}.

Φ−1
S (Ω(S)) has λ∞-measure 1 by THEOREM 1.1., and Φ−1

S (Ω(S)
⋂

Ω∗(S)) has the same measure
as Ω(S)

⋂
Ω∗(S). The proof of THEOREM 2.1. follows.

Remark 2.1. For Cantor series, the above criterion is hypothesis (H) in [10].

THEOREM 2.2. Assume

λ

{
x,

λ(B(n1, . . . , ni(x)))
λ(B(n1, . . . , ni−1(x)))

= O(e−i2), i ≥ 1
}

= 1.

Then λ-a.e., D`
p(

(
tn(x)

)
n≥0

) = +∞, for any p ≥ 1.

Proof. It is known (cf [6]) that for λ∞ almost all sequences u ∈ (0, 1)N, and for all p ∈ N,
D`

p(u) = +∞. The proof of THEOREM 2.2. runs along the same lines as the proof of the
preceding theorem (using LEMMA 1.2. instead of LEMMA 1.1.) and is thus omitted.

3. APPLICATIONS.

3-1. (α, γ)-EXPANSIONS.
(α, γ)-expansions (cf [2]) are number systems S(α, γ) = (]0, 1], Tj , (Jn,j)n∈N∗)j≥1 defined as

follows: for any j ≥ 1, let αj : N∗ →]0, 1] be strictly decreasing, αj(1) = 1, and limn→+∞ αj(n) =
0. Let γj : N∗ → IR+ be such that γj(n) ≥ αj(n)− αj(n + 1). Then let Jn,j =]αj(n + 1), αj(n)],
n ∈ N∗, and define Tj(x) = x−αj(n+1)

γj(n) on Jn,j .
A necessary and sufficient condition for S(α, γ) to satisfy condition (C) is that for any (ki)i≥1 ∈

R(S(α, γ)), limn→+∞
(∏n−1

i=1 γi(ki)
)

(αn(kn)− αn(kn + 1)) = 0 (cf [2]).
Cylinders are given by the following formula (cf [3])

B(k1, . . . , kp) =



p∑

j=1

αj(kj + 1)
j−1∏
m=1

γm(km),
p−1∑

j=1

αj(kj + 1)
j−1∏
m=1

γm(km) + αp(kp)
p−1∏
m=1

γm(km)


 .
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If (ki)i≥1 ∈ R(S(α, γ)), then necessarily, for any i ≥ 1,

αi+1(ki+1 + 1) <
αi(ki)− αi(ki + 1)

γi(ki)
.

The associated expansion is the infinite series representation x =
∑

j≥1

αj(kj + 1)
j−1∏

i=1

γi(ki). One

obtains
λ(B(k1, . . . , kp+1))
λ(B(k1, . . . , kp))

=
γp(kp)(αp+1(kp+1)− αp+1(kp+1 + 1))

αp(kp)− αp(kp + 1)
.

For Engel series, αj(n) = 1
n , γj(n) = 1

n+1 . Let S(E) be the associated number system.
Conditions on the digits are kj+1 ≥ kj , and since {x, limn→+∞ kn(x) < +∞} = Q∩]0, 1], from
λ(B(k1,... ,kp+1))
λ(B(k1,... ,kp)) ≤ 1

kp
it follows that the criterion of THEOREM 2.1. applies. The corresponding

result strengthens the one from [11, Chapter 11], since tn(x) = kn(x)Tn(x) for S(E) and T =
Tj , j ≥ 1.

For Sylvester series, let S(S) be the number system associated to the choice αj(n) = 1
n , γj(n) =

1. Conditions on the digits are kj+1 ≥ kj(kj +1). On the other hand, λ(B(k1,... ,kp+1))
λ(B(k1,... ,kp)) < 1

k2
p
. Since

k1 ≥ 2, and kj+1 ≥ k2
j , it follows that the criterion of THEOREM 2.2. applies and strengthens

the corresponding result of [11, Chapter 11] (here one has kn(x)(kn(x) + 1)Tn(x) = tn(x)).
For Lüroth series associated to the number system S(L) determined by the choice αj(n) = 1

n ,
and γj(n) = 1

n(n+1) , no conditions on the digits hold, and λ(B(k1,... ,kp+1(x)))
λ(B(k1,... ,kp)(x)) doesn’t tend to zero

on a set of full measure, nor does it’s Cesaro mean. However, it can be seen that (tn(x), tn+1(x)) ∈
] 34 , 1]×[0, 1

2 [ never occurs, thus the sequence
(
tn(x)

)
n≥1

is not c.u.d.. Notice that here, tn(.) = Tn,
where T := Tj , j ≥ 1, and Remark 0.1. applies.

For (α, γ)-expansions, though in [11, Chapter 11] is used a result from [4] that states λ(Wn(d)) =
d +O( 5

6

n), in our setting, this appears to be exact for Lüroth, Engel, and Sylvester series, since
(tn(.))n≥1 is uniformly distributed (PROPOSITION 1.1.).

Proofs given in [11, Chapter 11], concerning uniform distribution of the relevant sequences,
rely on a more general result from [8] (slightly modified in [11, Chapter 11]) which is used in the
following form:

THEOREM. P. S. (W. Philipp, F. Schweiger). Assume there exists a convergent series of
positive real numbers,

∑
k≥1 βk < +∞, such that for given d ∈]0, 1] and n, m ∈ N∗, the following

inequality holds;
λ(Wn(d) ∩Wn+m(d)) ≤

λ(Wn(d))λ(Wn+m(d)) + (λ(Wn(d)) + λ(Wn+m(d)))βm + λ(Wn+m(d))βn.

Then the sequence
(
tn(.)

)
n≥1

is λ-a.e. uniformly distributed.

We now give a criterion for that THEOREM P. S. may be applied:

THEOREM 3.1. Assume there exists some constant q > 1 and a k ∈ N∗ such that such that

λ

{
x, ∀p ∈ N∗, λ(B(n1, . . . , np+k(x)))

λ(B(n1, . . . , np(x)))
≤ 1

q

}
= 1.

Then the sequence
(
tn(.)

)
n≥1

is λ-a.e. uniformly distributed.
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Remark 3.1. THEOREM 3.1. holds for Cantor series and for many β-expansions (cf [9]). Notice
that it holds for Lüroth series too, and since λ is invariant for the associated transformation,
proves the ergodicity of the system.

Proof of THEOREM 3.1. With hypothesis of THEOREM 3.1., and THEOREM. P. S., it is
sufficient to show that for any d ∈ (0, 1)

λ(Wn(d) ∩Wn+m(d)) ≤ d2 +
d

q
m
k

.

Inside B(n1, . . . , np), for p ≥ N , let B(n1, . . . , np+m(d)) be the cylinder of rank p + m such
that an1...np

(1− d) + dbn1...np
∈ B(n1 . . . np+m(d)) (see (B)). Put d(n1 . . . np) = an1...np

(1− d) +
dbn1...np

.
Next define

Rp+m

(S, n1, . . . , np, d
)

=
{(np+1, . . . , np+m) /(n1, . . . np+m) ∈ Rp+m(S), bn1...np+m

< d(n1 . . . np)}.

One can write the following:

λ(Wp(d) ∩Wp+m(d)) =
∑

(n1...np)∈Rp(S)

λ(Wp(d) ∩Wp+m(d) ∩B(n1 . . . np))

=
∑

(n1...np)∈Rp(S)




∑

(np+1...np+m)∈Rp+m

(
S,n1,... ,np,d

)dλ(B(n1 . . . np+m))




+
∑

(n1...np)∈Rp(S)

λ(Wp(d) ∩Wp+m(d) ∩B(n1 . . . np+m(d))).

≤ d2 +
∑

(n1...np)∈Rp(S)

d ·
(

λ
(
B(n1 . . . np+m(d))

)

λ
(
B(n1 . . . np)

)
)
· λ(

B(n1 . . . np)
)

≤ d2 + d · q

q
m
k

since the hypothesis implies λ(B(n1...np+m)
λ(B(n1...np) ≤ q

q
m
k

. The proof of THEOREM 3.1. follows.

3-2. GENERALIZED CANTOR PRODUCTS.
Let k ∈ N∗. In [7] the following number system is studied (call it S(C, k)). Let Jn,j =

[ n−1
n+k−1 , n

n+k [, and on Jn,j := Jn let Tj = T be defined by T (x) = x · (n+k
n

)
. This is associated to

the infinite product expansion x =
∏

i≥0
ri(x)

ri(x)+k , where ri(x) = r if T i(x) ∈ Jri(x).

Conditions on the digits are ri+1 ≥ r2
i + (ri − 1)(k − 1), and (ri(x) = 1, i ≥ 0) ⇒ (x = 0).

In [7], the sequence
(
tn(.)

)
n≥0

is shown to be λ-a.e. c.u.d.. However, since ri+1 ≥ r2
i , and

λ(B(r0,... ,rn+1))
λ(B(r0,... ,rn)) < 1

r2
n
, the conditions of THEOREM 2.2. and 2.1. are fulfilled, and the result

follows.
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3-3. CONTINUED FRACTIONS.
Let [y] denote the integer part of the real number y. Let S(CF ) be the system determined

by the following choices; Tj(x) = T (x) = 1
x −

[
1
x

]
if x 6= 0, T (0) = 0, and Jn =] 1

n+1 , 1
n ]. This is

associated to the continued fraction expansion x = [0, a1 . . . an . . . ] (we take notations from [5]).
Cylinders of rank n are the sets B(a1 . . . an) =

(
pn

qn
, pn+pn−1

qn+qn−1

)
, or B(a1 . . . an) =

(
pn+pn−1
qn+qn−1

, pn

qn

)

depending on the parity of n. One can compute that

{
tn(x) = (qn+qn−1)·T nx

qn+qn−1·T nx , n ≡ 0(2)

tn(x) = qn(1−T nx)
qn+qn−1·T nx0 , n ≡ 1(2)

Using ergodicity of the transformation T with respect to it’s invariant measure µ, determined
by it’s density dµ = dλ

(1+x) log 2 , one can show that the criterion of THEOREM 2.1. fails since
the set involved has measure 0. However, THEOREM 3.1. may be applied to obtain uniform
distribution since λ(B(a1...an+1))

λ(B(a1...an)) ≤ 1
2 (cf [5, p. 58-59]).

As in the case of Lüroth series, one can directly prove that the sequence
(
tn(x)

)
n≥0

is never
c.u.d., since the event (tn(x), tn+1(x), tn+2(x)) ∈] 14 , 1

3 [3 never occurs: indeed, with formulas from
[5, p. 59], one obtains

(
n odd and tn(x) ∈] 14 , 1

3 [
) ⇒ (

tn+1(x) > 1
3

)
.

PROBLEMS. Is there a number system S for which criterion of THEOREM 2.1. fails, though
the sequence

(
tn(.)

)
n≥0

is λ-a.e. c.u.d.?
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[10] T. Šalàt, Zu einigen Fragen der Gleichverteilung (mod 1), Czechosl. Math. J. 18 (1968), 476–488.
[11] F. Schweiger, Ergodic Properties of Fibered Systems, Institüt fur Mathematik der Universität Salzburg, A–

5020 Salzburg, Draft Version, April 1989.
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