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Abstract. For any pair (m, r) such that 2 ≤ m ≤ r < ∞, we construct an ergodic
dynamical system having spectral multiplicity m and rank r. The essential range
of the multiplicity function is described. If r ≥ 2, the pair (m, r) also has a weakly
mixing realization.
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0. Introduction.

Given a dynamical system (X, µ, T ) one associates to it a measure theoretic in-
variant, the rank r(T ), and a spectral invariant, the multiplicity m(T ). The pair
(m(T ), r(T )) is such that 1 ≤ m(T ) ≤ r(T ) ≤ ∞.

It was conjectured in [M1] that for any such pair of integers (or ∞), there exists
an ergodic system (X, µ, T ) realizing it. Pairs (1, 1) where constructed in [Ch], (1, 2)
in [dJ], (1, r) in [M1], (2, r) in [GoLe], (r, r) in [R1,2], (r, 2r) in [M2], (p − 1, p) in
[FeKw] and (1,∞) in [LeSi], [Fe]. Gaussian-Kronecker systems allways realize the
pair (1,∞) ([dlR]). The latest result of this series is a density theorem [FeKwMa]
proving that given m, the set of r’s such that the pair (m, r) is realizable has density
1.

In this note we construct realizations of pairs (m, r) with 2 ≤ m ≤ r < ∞.
The pair (∞,∞) however is realized with any ergodic system of positive entropy.
Thus, together with [M1], we prove that all pairs (m, r) with 1 ≤ m ≤ r < ∞ are
obtainable.

The transformations we use are continuous Morse automorphisms over a finite
abelian group (see I. for the preliminaries). These systems however have partly
discrete spectrum.

However the same pairs (m, r) can be obtained within the class of weakly mix-
ing systems. We give to this end some hints in Remark IV.1., but for the sake
of simplicity, computations are only carried out with full details for the Morse
automorphisms.

Our examples (see II.) sit in the class of so called natural factors of a compact
abelian group extension ([KwJLe]).

We first construct an ergodic group extension (X × G,Tϕ, µ ⊗ mG) realizing
the pair (r, r). Next we produce a natural factor (X × H, TϕH , µ ⊗ mH), where
H = G

/
H0 is a quotient group.

Using methods developed in [KwJLe] we compute the spectral multiplicities of
the systems: the ones of the natural factor decrease. But surprisingly the ranks of
the natural factors remain equal to the rank of the initial system, r.

The systems have a continuous Morse shift representation which we use for the
rank computations. In Section III. we prove the following for 2 ≤ r < ∞:

Theorem (r, r). The system (X×G,Tϕ, µ⊗mG) satisfies r(Tϕ) = r = m(Tϕ), and
the essential range of its multiplicity function is {d : d|r}. It is measure theoretically
isomorphic to a strictly ergodic continuous Morse automorphism.

If 2 ≤ m < r < ∞, passing to the natural factor (X×H,TϕH , µ⊗mH), we prove
in section III. that m(TϕH

) = m while in section IV. we prove that its rank is r,
by proving that its covering number satisfies F ?(TϕH

) < 1
r−1 . We obtain:

Theorem (m, r). The system (X × H,TϕH , µ ⊗ mH) is such that r(TϕH ) = r,
m(TϕH

) = m, and the essential range of its multiplicity function is {1, . . . ,m}. It
is measure theoretically isomorphic to a strictly ergodic continuous Morse automor-
phism.

I. Preliminaries.

Throughout this paper G shall denote an additive abelian finite group, and Ω
the space of bi-infinite sequences taking values in G.
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I.1. Blocks and operations on blocks.
A finite sequence B = B[0]...B[k − 1], B[i] ∈ G, k ≥ 1, is called a block over G.

The number k is called the length of B and denoted |B|. If ω ∈ Ω (or ω is a one-
sided sequence over G) and B is a block then ω[i, s] and B[i, s] (0 ≤ i ≤ s ≤ k− 1)
denote the blocks ω[i]...ω[s] and B[i]...B[s] respectively. If C = C[0]...C[f − 1] is
another block then the concatenation of B and C is the block

BC = B[0]...B[k − 1]C[0]...C[f − 1].
Concatenation extends to more than two blocks in the obvious way. We define also
for q ∈ Z,

Bq =

q times︷ ︸︸ ︷
B . . . . . . B .

If v : G → G is a group automorphism, let v(B) be the block
v(B) = v(B[0])...v(B[k − 1]).

If g ∈ G, by B(g), we will denote the block B+g = B(g) = (B[0]+g)...(B[k−1]+g).
Then v(B(g)) = v(B)(v(g)), g ∈ G. Finally, we define the product B×C of B and
C as follows (|C| = f):

B × C = B(C[0])...B(C[f − 1]).
As for concatenation, this multiplication operation “×” is extended to more than
two blocks, and is associative.

I.2. Occurrences, frequencies, density, d̄ distance.
The block B is said to occur at place i in ω (resp. in C as above (k ≤ f)) if

ω[i, i + |B| − 1] = B (resp. C[i, i + |B| − 1] = B). We shall write B l ω (resp.
B l C) when this happens for some position i.

The frequency of B in C (resp. in ω) is the number

fr(B, C) = |C|−1#{0 ≤ i ≤ |C| − |B| − 1; B occurs at place i in C},
(resp. fr(B,ω) = lim

s→∞
fr(B,ω[0, s− 1]) if this limit exists).

For a one sided infinite subsequence of ω, E = {ω[n], n ∈ I ⊂ N}, we call the
density of E the corresponding density of the set I in N, and denote it by D(E, ω)
(if it exists).

Let δ > 0. We say that B δ-occurs at place i in C (resp. in ω) if
d̄(B, C[i, i + |B| − 1]) < δ (resp. d̄(B, ω[i, i + |B| − 1]) < δ),

where
d̄(x1...xn, y1...yn) = n−1#{i : xi 6= yi};

d̄ is the normalized Hamming distance or d-bar distance between blocks. It has the
following properties:

(1)





(a) d̄(B(g), C(g)) = d̄(B, C), g ∈ G,
(b) d̄(v(B), v(C)) = d̄(B,C),
(c) d̄(B × C,B ×D) = d̄(C, D),
(d) d̄(A1 . . . Ak, B1 . . . Bk) = 1

k

∑k
i=1 d̄(Ai, Bi)

(|Ai| = |Bj |, 1 ≤ i, j ≤ k),
(e) d̄(A1A2, B1B2) = |A1|

|A1|+|A2| d̄(A1, B1) + |A2|
|A1|+|A2| d̄(A2, B2)

(|Ai| = |Bi|, i = 1, 2),
(f) d̄(A, B) ≥ |A1|

|A| d̄(A1, B1) if A = A1A2, B = B1B2,

(g) d̄(B, C) ≤ d̄(B, A) + d̄(A,C).
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If |B| ≥ 2, we let B̌ be the block of length |B| − 1 defined by

(2) B̌[i] = B[i + 1]−B[i], 0 ≤ i ≤ |B| − 2.

We shall also use the following property of the d̄ distance;

(3) d̄(B̌, Č) ≤ 3d̄(B,C).

I.3. The dynamical system associated to a sequence.
We let S denote the left shift homeomorphism of Ω or Ω¤ = (G ∪ {¤})Z. If

ω = ω[0]ω[1] . . . is a one-sided sequence over G, we let ω¤ be the element of Ω¤

defined by ω¤[n] = ω[n] if n ≥ 0, ω¤[n] = ¤ otherwise. We then define

Ωω = {y ∈ Ω : ∃(ni), ni →∞, y = lim
i

Sniω¤}.

The topological flow (Ωω, S) is minimal if there is no proper closed and S-
invariant subset of Ωω. We say that (Ωω, S) is uniquely ergodic if there is a unique
borelian normalized S-invariant measure µω on Ωω. (Ωω, S) is said to be strictly
ergodic if it is both minimal and uniquely ergodic (for short, we say that ω is strictly
ergodic).

If ω is strictly ergodic, then for each block B, and q ∈ Z,

µω([B]q) = fr(B, ω),

where [B]q = {y ∈ Ωω : y[q, q + |B| − 1] = B}.
I.4. Rank and covering number of (Ωω, S, µω).

For an ergodic dynamical system, the rank and the covering number are classical
measure theoretic invariants ([dJ], [Fe]). In the case of a symbolic strictly ergodic
system (Ωω, S, µω), we formulate their “combinatorial”definitions bellow.

Let A be a (finite) family of blocks and B a block such that |B| ∈ {|A| : A ∈ A},
we let

d̄(B,A) = min{d̄(B, A) : A ∈ A, |A| = |B|}.
If A = {A1, . . . , Ak}, C is a block, and δ > 0, we define

tδ(A, C) = tδ(A1, . . . , Ak, C) = max{ |C1|+ . . . + |Cp|
|C| },

where the maximum is taken over all concatenations of the form

C = ε1C1ε2 . . . εpCpεp+1

for which d̄(Ci,A) < δ, 1 ≤ i ≤ p. Then we define, for a strictly ergodic one-sided
sequence ω,

tδ(A, ω) = lim inf
N→∞

tδ(A, ω[0, N ])(= lim
N→∞

tδ(A, ω[0, N ])).

In particular, tδ(A, ω) is defined for a block A. It is known ([dJ], [M2]) that in the
case under consideration the rank of (Ωω, S, µω) is at most r if for any δ > 0 and
any N ∈ N, there exists A of cardinality r such that |A| ≥ N , A ∈ A, and

tδ(A, ω) ≥ 1− δ.
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Then (Ωω, S, µω) is of rank equal to r if it is of rank at most r but not at most
r − 1. The rank is a measure theoretic invariant. We denote it by r(S) or rω.

We say that the covering number F ?(ω) (also denoted by F ?(S)) of ω is at least
a (0 < a < 1) if

∀ δ > 0, ∀ n ≥ 1, ∃ A, |A| ≥ n, tδ(A,ω) ≥ a.

Then the covering number F ?(ω) is the supremum of such a’s. The covering number
is a measure theoretic invariant, and

rω · F ?(ω) ≥ 1.

I.5. Adding machines and cocycles.
Let T : (X,B, µ) −→ (X,B, µ) be an (nt)-adic adding machine, i.e. nt|nt+1,

λt+1 = nt+1/nt ≥ 2 for t ≥ 0, λ0 = n0 ≥ 2,

X = {x =
∞∑

t=0

qtnt−1 : 0 ≤ qt ≤ λt − 1, n−1 = 1}

is the group of (nt)-adic numbers and Tx = x + 1̂, 1̂ = (1, 0, 0, ...). The space X
has the standard sequence (ξt) of T -towers. Namely,

ξt = (Dt
0, ..., D

t
nt−1),

where

Dt
0 = {x ∈ X : q0 = ... = qt = 0}, T s(Dt

0) = Dt
s, s = 0, ..., nt − 1.

Then ξt+1 refines ξt and the sequence of partitions (ξt) converges to the point
partition.

A cocycle is a measurable function ϕ : X → G. A cocycle ϕ defines an automor-
phism Tϕ on (X ×G,µ⊗mG) by

Tϕ(x, g) = (Tx, g + ϕ(x)), x ∈ X, g ∈ G,

where mG is the Haar measure of G. Tϕ is ergodic iff for every non-trivial γ ∈ Ĝ

(Ĝ is the dual group), there is no measurable solution f : X → S1 to the functional
equation

γ(ϕ(x)) = f(Tx)/f(x), x ∈ X [Pa].

I.6. Morse cocycles (M-cocycles).
We say ϕ : X → G is an M-cocycle if for every t ≥ 0, ϕ is constant on each level

Dt
i for i = 0, 1, ..., nt−2. Such a cocycle is defined by a sequence of blocks (At)t≥0,

|At| = nt − 1, and
ϕ|Dt

i
= At[i], i = 0, 1, ..., nt − 2.

Now we describe Morse sequences (M-sequences). Let b0, b1, ... be finite blocks
with |bt| = λt, bt[0] = 0, t ≥ 0. Then we may define a one-sided sequence by

ω = b0 × b1 × ...
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Such a sequence is called a generalized Morse sequence over G if it is not periodic
and if each of the sequences

ωt = bt × bt+1, ..., t ≥ 0,

contains every symbol in G. By grouping some of the bt’s we can assume that each
block bt contains every symbol in G. When this is the case, it is known [Ma] that
(Ωω, S) is strictly ergodic if fr(g, bt) = 1

#G for every g ∈ G and t ≥ 0. It is not
hard to observe that the condition

fr(g, bt) ≥ ρ > 0, for every t ≥ 0, g ∈ G,

already implies the strict ergodicity of ω.
A Morse sequence ω allows one to define an M-cocycle ϕ = ϕω on X as follows:

let
Bt = b0 × ...× bt, t ≥ 0.

Then choose (At)t≥0 = (B̌t)t≥0 (cf. (2)): it is easy to check that it defines an
M-cocycle ϕ as above.

It follows from [Kw] and [Le] that the dynamical systems (Ωω, S, µω) and (X ×
G,Tϕ, µ ⊗ mG) are measure theoretically isomorphic if ω is strictly ergodic. We
finally define

(4)

{
ϕ(p)(x) = ϕ(x) + . . . + ϕ(T p−1x), x ∈ X, p ≥ 1.

Then ϕ
(p)

|Dt
i

= Bt[i + p]−Bt[i], p ≥ 1, 0 ≤ i < nt − p− 1.

I.7. Spectral multiplicity(ies) and continuous Morse sequences.
If ω is a strictly ergodic Morse sequence over G, and ϕ = ϕω is the associated

M-cocycle, for γ ∈ Ĝ, we define

Lγ = {f ⊗ γ ∈ L2(X ×G,µ⊗mG); f ∈ L2(X,µ)}.

Let UTϕ be the unitary operator induced by Tϕ on L2(X × G,µ ⊗ mG). The
subspaces Lγ are UTϕ -invariant and we have the spectral decomposition

L2(X ×G,µ⊗mG) =
⊕

γ∈Ĝ

Lγ .

It is shown in [KwSi] that Tϕ has simple spectrum on each Lγ . Let µγ be the
spectral measure of Tϕ on Lγ . It follows from [Ke] that any two of those µγ are
either orthogonal or equivalent.

The essential range of the multiplicity function is then the subset of N consisting
of the cardinalities of the equivalence classes of the measures µγ , γ ∈ Ĝ. It is
a spectral invariant. The spectral multiplicity then coincides with the maximal
number of this set. We denote it by m(Tϕ).

The subspace Lê (ê := the trivial character) is generated by the eigenfunctions
of Tϕ corresponding to all nt-roots of unity. A Morse sequence ω is continuous
(or the M-cocycle ϕω is weakly mixing) if Lê contains all eigenfunctions of Tϕ, or
equivalently if each measure µγ , γ 6= ê, is continuous. The following is proved in
[IwLa]:
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Proposition I.0. For a strictly ergodic M-sequence ω over G, a sufficient condition
for it to be continuous is that #G

∣∣λt, t ≥ 0.

I.8. Preliminary results.
We know that the measures µγ , γ ∈ Ĝ, are either equivalent or orthogonal. We

shall use the following criterions to know which case holds:

Proposition I.1 ([FeKw], [GoKwLeLi]). If ω = b0×b1× ... is a strictly ergodic
Morse sequence, where for every t, bt is of the form

bt = dtv(dt)...vkt−1(dt),

where v is an automorphism of G, dt are blocks and kt are integers such that∑∞
t=0

1
kt

< ∞, then µγ ' µv̂(γ) for all γ in Ĝ, where v̂ is the dual automorphism
to v.

Proposition I.2 ([GoKwLeLi]). Additionally, if for given γ, γ′ ∈ Ĝ,

lim
t→∞

∫
γ[ϕ(nt)(x)]dµ and lim

t→∞

∫
γ
′
[ϕ(nt)(x)]dµ (see (4))

exist and differ from each other, then µγ ⊥ µγ′ (note that Tnt → IdX in the weak
topology).

I.9. Quotient M-cocycle (sequence).
Let H0 be a subgroup of G, and H = G

/
H0

be the quotient group. Let πH :
G → H be the quotient map (a group homomorphism). If mH denotes the Haar
measure on H, then the map

PH := IdX × πH : (X ×G,Tϕ, µ⊗mG) → (X ×H, TϕH
, µ⊗mH)

is a factor map (the natural factor map associated to the quotient group H).
For a block B over G, we define the block BH over H by

BH = πH(B[0]) . . . πH(B[|B| − 1]),

and for η ∈ Ω, let ηH be defined by

ηH [n] = πH(η[n]), n ∈ Z.

Using the obvious equality πH(B×C) = πH(B)×πH(C), it is not hard to see that
if ω = b0 × b1 × . . . is a M-sequence over G (we let ϕ be the corresponding M-
cocycle), then ωH = b0H

×b1H
× . . . and it is an M-sequence, over H. It determines

an M-cocycle ϕH which moreover satisfies

ϕH = πH ◦ ϕ.

We now recall some facts from [KwJLe]: define Lγ,H = {f⊗γ : f ∈ L2(X, µ)} for
γ ∈ Ĥ. Then using the factor map PH , we can identify this UTϕH

-invariant subspace
of L2(X ×H,µ⊗mH) with the UTϕ -invariant subspace Lγ̃ of L2(X ×G,µ⊗mG)
defined in I.7., where γ̃ ∈ Ĝ is the unique element of Ĝ such that

γ̃|H0 = ê|H0 and γ ◦ πH = γ̃.

In fact if VPH : Lγ̃ → Lγ,H is defined by VPH (f ⊗ γ̃) = f ⊗ γ then it provides a
unitary equivalence between the pairs (Lγ̃ , UTϕ) and (Lγ,H , UTϕH

). The cyclicity
of the spaces Lγ,H under the related unitary action remains, as in I.7..

So we obtain

Proposition I.3. If the assumptions of Proposition I.1. hold, and γ, γ′ ∈ Ĥ are
such that γ̃, γ̃′ belong to a same v̂-trajectory, then µγ ' µγ′ .
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II. The candidates for (m, r).

First of all we select G = Zr
n (direct product) and r < n (r ≥ 2 is given). Some

conditions on n shall be specified in the proof of Theorem (m, r) (see IV.3).
For h ∈ G, we write h = (h1, . . . , hr), hi ∈ Zn. We let

ei = ( 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0), 1 ≤ i ≤ r.

Then h = h1e1 + . . . + hrer. Let v ∈ Aut(G) be defined by

v(h) = (hr, h1, . . . , hr−1), h ∈ G.

Now we start defining some blocks (the goal is to define the blocks bt, t ≥ 0). Put,
for t ≥ 0, 




F1 = Ft,1 = 0e1(2e1) . . . ((l − 1)e1), l = lt,
F2 = Ft,2 = 0e2(2e2) . . . ((l − 1)e2),
...

...
...

...
...

Fr = Ft,r = 0er(2er) . . . ((l − 1)er),

where n
∣∣lt and lt → ∞. Observe that |Fi| = lt, and that v(Fi) = Fi+1, 1 ≤ i ≤ r,

where Fr+1 := F1. Let





β1 = βt,1 = F1 × F2 × . . .× Fr,
β2 = βt,2 = F2 × . . .× Fr × F1,
...

...
...

...
...

βr = βt,r = Fr × F1 × . . .× Fr−1.

Then |βi| = lr, and v(βi) = βi+1, 1 ≤ i ≤ r, where similarly βr+1 := β1. Next let

β = βt = β1β2 . . . βr (concatenation) (= β1v(β1) . . . vr−1(β1)),

and

bt = βpt

t =

pt times︷ ︸︸ ︷
β . . . . . . β = β1v(β1) . . . . . . vkt−1(β1),

where kt = rpt. We have |bt| = rptl
r
t := λt. We choose the sequence (pt) such that∑

t≥0
1
pt

< ∞. Finally we let nt = λ0 . . . λt and Bt = b0 × . . . × bt as in I.6.. Let
ω be the associated M-sequence over G and ϕ the related M-cocycle. Notice that
nr

∣∣λt.
Now given 2 ≤ m < r, we define

{
H0 = {0}m × Zr−m

n ,
H = G

/
H0

≡ Zm
n ,

and let the subscript H denote the corresponding blocks, M-sequence, M-cocycle
as in I.9..
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Proposition II.1. The sequence ω is strictly ergodic and (Ωω, S, µω) is measure
theoretically isomorphic to (X × G,Tϕ, µ ⊗mG). Moreover it is a continuous M-
sequence.

Proof. Using I.6., we shall prove that for t ≥ 0,

fr(g, bt) =
1
nr

.

Looking more closely to the blocks bt it is seen that for g ∈ G, fr(g, βt,i) = 1
#G =

1
nr , 1 ≤ i ≤ r. So fr(g, βt) = 1

nr and fr(g, bt) = 1
nr .

Since nr
∣∣λt, we may apply Proposition I.0. to obtain the continuity. ¥

Proposition II.2. The sequence ωH is strictly ergodic and (ΩωH
, S, µωH

) is mea-
sure theoretically isomorphic to (X×H,TϕH

, µ⊗mH). Moreover it is a continuous
M-sequence.

Proof. We use facts from I.6. again. The strict ergodicity of ωH follows, as in the
preceding proof, from the equation

fr(h, btH ) =
∑

πH(g)=h

fr(g, bt) =
#H0

nr
(=

1
#H

=
1

nm
), h ∈ H.

The continuity is proved as for ω. ¥

The system (Ωω, S, µω) is our candidate for the (r, r) pair, while the system
(ΩωH , S, µωH ) is our candidate for the (m, r) pair.

III. Spectral multiplicity(ies) of Tϕ, TϕH , Theorem (r, r).

We first apply Propositions I.1., II.1., I.7. and the description of candidates in
II. to obtain, using

∑
t≥0

1
kt

< ∞,

Proposition III.1. One has m(Tϕ) ≥ r.

Proof. As indicated above, only check that the v-trajectory of e1 is of length r. ¥
Proposition III.2. One has m(TϕH

) ≥ m.

Proof. Let H0 = ann H0 = {γ ∈ Ĝ : γ|H0 = ê|H0}. Then as in [KwJLe], using I.9.
and Proposition I.3., we have

m(TϕH
) ≥ max{#(H0 ∩Υ)},

where Υ runs along the set of v̂-trajectories in Ĝ. As is easily computed, this max
is equal to m. ¥

To prove that m(Tϕ) = r, we shall use Proposition I.2..

Proposition III.3. One has m(Tϕ) = r.

Proof. Recall that from the block constructions in II. and I.6., we have ϕ|Dt
i

=
Bt[i+1]−Bt[i]. For h = h1e1 + . . .+hrer ∈ G, let h̄(t) = h1 +h2lt+1 + . . .+hrl

r−1
t+1 .

Then h̄(t) < 2nlr−1
t+1 , hence h̄(t)

/
λt+1 → 0. Moreover,

ϕ(h̄(t)nt) = bt+1[p + h̄(t)]− bt+1[p], x ∈ Dt+1
pnt+j′
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for 0 ≤ j′ < nt and 0 ≤ p ≤ λt+1− h̄(t)− 2. We write p = qrlrt+1 + ilrt+1 +w, where
0 ≤ q < pt+1, 0 ≤ i < r, 0 ≤ w < lrt+1. Next we write w = w1+w2lt+1+. . .+wrl

r
t+1

where 0 ≤ wj < lt+1, 1 ≤ j ≤ r. Assuming that for each 1 ≤ j ≤ r, wj < lt+1−n−1,
we see from the block construction that for such p’s,

ϕ(h̄(t)nt) = vi−1(βt+1,1[w + h̄(t)]− βt+1,1[w]) = vi−1(h), x ∈ Dt+1
pnt+j′ .

For given h and t, the set of p’s satisfying the desired conditions from above has
cardinality λt+1 − o(λt+1), hence we obtain, decomposing X along each T -tower
ξt+1, that for any γ ∈ Ĝ,

lim
t→∞

∫

X

γ(ϕ(h̄(t)nt)(x))dµ(x) =
1
r

r−1∑

i=0

v̂i(γ)(h).

Moreover, (h̄(t)nt) is a rigid time for T . For γ” ∈ Ĝ, let Aγ” = 1
r

∑r−1
i=0 v̂i(γ”). If

γ, γ′ ∈ Ĝ do not belong to the same v̂-trajectory, then Aγ ⊥ Aγ′ (in L2(G,mG)).
Hence since Aγ 6≡ 0, there exists an h ∈ G such that Aγ(h) 6= Aγ′(h). Then
taking the rigid time (h̄(t)nt), applying Proposition II.2., we obtain µγ ⊥ µγ′ . We
conclude with Proposition III.1.. ¥
Proposition III.4. One has m(TϕH

) = m.

Proof. Using the same notations as in I.9. and Propositions II.2., III.2., III.3., we
deduce that if γ, γ′ ∈ Ĥ, if µγ̃ ⊥ µγ̃′ then µγ ⊥ µγ′ as in [KwJLe]. Hence we may
deduce the equality

m(TϕH
) = max{#(H0 ∩Υ)},

where Υ runs along the set of v̂-trajectories in Ĝ. ¥
Next it is easy to compute that the set of lengths of v̂-trajectories in Ĝ is {d : d|r}.

Hence with I.7. and Proposition III.3., we conclude that the essential range of the
multiplicity function of Tϕ equals {d : d|r}.

And we see that if for 1 ≤ s ≤ m, Υs denotes the v̂-trajectory of the character
dual to e1 + . . .+ es, then #(H0 ∩Υs) = s. Therefore, with Propositions III.3. and
III.4., we have obtained:

Proposition III.5. The system (X ×G,Tϕ, µ⊗mG) satisfies m(Tϕ) = r, and the
essential range of its multiplicity function is {d : d|r}.

For 2 ≤ m < r, the system (X × H, TϕH
, µ ⊗mH) satisfies m(TϕH

) = m, and
the essential range of its multiplicity function is {1, . . . ,m}.

Now we pass to proving that r(Tϕ) = r. Since r(Tϕ) ≥ m(Tϕ) = r, we only
prove that r(Tϕ) ≤ r. Let us define

Ei := Et,i = Bt−1 × βt,i, 1 ≤ i ≤ r.

We shall show that limt→∞ tδ(E1, . . . , Er, ω) = 1 for any δ > 0.
For 0 ≤ u < lr, we have

(5)
{

(a) u = u1 + u2l + . . . + url
r−1, 0 ≤ ui < l, 1 ≤ i ≤ r,

(b) βi[u] = vi−1(β1[u]) = vi−1(u1e1 + . . . + urer), 1 ≤ i ≤ r.
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Let

U = {u = u1 + u2l + . . . + url
r−1 : 0 ≤ ui < l, 2 ≤ i ≤ r, 0 ≤ u1 < l − n}.

Then #U = lr−1(l − n). For u ∈ U , and g = (g1, . . . , gr) ∈ G, for fixed t ≥ 0, we
have

β1(g)[u] = (u1 + g1, . . . , ur + gr) = β1[u + u(g)],

where u(g) = g1 + g2l + . . . + grl
r−1, and u(g) ≤ 2nlr−1. Hence u(g)

|β1| ≤ 2n
l and

d̄(βt,1(g)[0, lrt − u(g)− 1], βt,1[u(g), lrt − 1]) ≤ 2n

lt
→t 0.

In a similar way we obtain, using βi = vi−1(β1), 1 ≤ i ≤ r, and (1b), (5b), that the
above inequality is valid for βt,i, 1 ≤ i ≤ r.

Since ωt = bt×bt+1×. . . is a concatenation of the blocks βt,i(g), g ∈ G, 1 ≤ i ≤ r,
using I.2., I.4., and (1c), we see that for given δ > 0,

tδ({Et,i : 1 ≤ i ≤ r}, ω) ≥ 1− 2n

lt
→t→∞ 1,

if 2n
lt

< δ, because as is obvious from I.4., if 0 ≤ δ′ < δ, then tδ({Et,i : 1 ≤ i ≤
r}, ω) ≥ tδ′({Et,i : 1 ≤ i ≤ r}, ω). Hence we obtain, using I.4. and Proposition
III.5.:

Theorem (r, r). The system (X×G,Tϕ, µ⊗mG) satisfies r(Tϕ) = r = m(Tϕ), and
the essential range of its multiplicity function is {d : d|r}. It is measure theoretically
isomorphic to a strictly ergodic continuous Morse automorphism.

IV. The rank of TϕH : Theorem (m, r).

Using Theorem (r, r) and the natural factor PH , it is obvious that r(TϕH ) ≤ r.
So from now on, we make some computations to show that F ?(ω) < 1

r−1 , because
F ?(TϕH ) · r(TϕH ) ≥ 1. We first of all proceed by introducing new blocks (over the
alphabet H), more convenient than those having the subscript “H”.

Recall that




ωH = b0H
× b1H

× . . . ,
btH

= βpt

tH
,

βtH
= βt,1H

. . . βt,rH
,

βt,iH
= Ft,iH

× . . .× Ft,rH
× Ft,1H

× . . .× Ft,i−1H
.

Identifying H with Zm
n = ẽ1Zn + . . . + ẽmZn, where ẽ1, . . . , ẽm are the natural

generators of Zm
n , we get πH(ei) = ẽi for 1 ≤ i ≤ m and πH(ei) = 0 for m + 1 ≤

i ≤ r. Then




Ft,iH
= FiH

= 0ẽi(2ẽi) . . . ((l − 1)ẽi) if 1 ≤ i ≤ m,
Ft,iH

= FiH
= 0 . . . . . . 0︸ ︷︷ ︸

lt times

if m + 1 ≤ i ≤ r.

So from now on, we shall write e1, . . . , em, Fi = Ft,i, βi = βt,i, bt, ω instead of
ẽ1, . . . , ẽm, Ft,iH

, βt,iH
, btH , and ωH respectively.
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Therefore we shall make the forthcoming computations with the following new
blocks (over H):





Ft,i = Fi = 0ei(2ei) . . . ((l − 1)ei) if 1 ≤ i ≤ m,
Ft,0 = F0 = Ft,i = Fi = 0 . . . . . . 0︸ ︷︷ ︸

l times

if m + 1 ≤ i ≤ r,

and 



β1 = F1 × . . .× Fm ×
r−m︷ ︸︸ ︷

F0 × . . .× F0,

β2 = F2 × . . .× Fm ×
r−m︷ ︸︸ ︷

F0 × . . .× F0×F1,
...

...
...

βm = Fm ×
r−m︷ ︸︸ ︷

F0 × . . .× F0×F1 × . . .× Fm−1,

βm+1 =

r−m︷ ︸︸ ︷
F0 × . . .× F0×F1 × . . .× Fm,

...
...

...

βr = F0 × F1 × . . .× Fm ×
r−m−1︷ ︸︸ ︷

F0 × . . .× F0 .

Then β = β1 . . . βr, bt = βpt , ω = b0 × b1 × . . . and ωt = bt × bt+1 × . . . . Notice
that for t ≥ 0, ω = Bt × ωt+1.

In the sequel we shall need the formulas for the values βi[u], 0 ≤ u < lr. It
follows from the definition of the F ’s and β’s that ((5a))

(6) βi[u] = u
(i)
1 e1 + . . . + u(i)

m em,

where

(7)
{

(u(i)
1 , . . . , u

(i)
m ) = (ur−i+2, . . . , ur, u1, . . . , um−i+1) if 1 ≤ i ≤ m,

(u(i)
1 , . . . , u

(i)
m ) = (ur−i+2, . . . , . . . , ur+m−i+1) if m + 1 ≤ i ≤ r.

IV.1. Auxiliary Lemmas.
In this section we give some estimations of the d̄-distance between blocks occur-

ring in ω or ωt. We assume that

(8) lt > max{16,
8r

m
}, for every t ≥ 0.

Let

(9) 0 ≤ s′ ≤ rlr − 1, s′ = i′lr + u′, with 0 ≤ i′ ≤ r − 1, 0 ≤ u′ ≤ lr − 1,

and denote
Ig,h = β(g)β(h)[s′, s′ + rlr − 1], g, h ∈ H.
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Lemma IV.1. If 1 ≤ i′ ≤ r − 2 then for every a, g, h ∈ H,

d̄(β(a), Ig,h) ≥ m

6r
.

Proof. Using (3) we get

(10) d̄(β(a), Ig,h) ≥ 1
3
d̄( ˇβ(a), ˇIg,h).

Take 0 ≤ s ≤ rlr − 1 and represent it as s = ilr + u with 0 ≤ i ≤ r − 1 and
0 ≤ u ≤ lr − 1. Then

(11) ˇβ(a)[s] = ˇβi(a)[u] if u > 0,

and

(12) ˇβ(a)[s] = e = −(e1 + . . . + em) if u = 0.

Next let S = {0 ≤ s ≤ rlr − 1 : 0 ≤ u1 ≤ l− 2, where u is of the form (5a)}, and





II = e1 . . . e1︸ ︷︷ ︸
lr−1

e e2 . . . e2︸ ︷︷ ︸
lr−1

e . . . e em . . . em︸ ︷︷ ︸
lr−1

e 0 . . . 0︸ ︷︷ ︸
lr−1

e . . . e 0 . . . 0︸ ︷︷ ︸
lr−1

,

III = IIeII[s′, s′ + rlr − 2], (|II| = rlr − 1).

It follows from (6) and (7) that whenever u1 < l − 1,

(13)
{

β̌i[u] = ei if 1 ≤ i ≤ m,
β̌i[u] = 0 for m + 1 ≤ i ≤ r.

Using (11), (12) and (13) we obtain ˇβ(a)[s] = II[s] if s ∈ S. At the same time we
have #S

rlr−1 ≥ 1− 2
l , which implies

(14) d̄( ˇβ(a), II) <
2
lt

.

Similarly we establish that

(15) d̄( ˇIg,h, III) <
2
lt

.

It is easy to remark that

(16) d̄(II, III) ≥ m

r
(because 1 ≤ i′ ≤ r − 2).

Now, using (1g), (14− 16) we get
m
r ≤ d̄(II, III) ≤ d̄(II, ˇβ(a)) + d̄( ˇβ(a), ˇIg,h) + d̄( ˇIg,h, III) < 4

lt
+ d̄( ˇβ(a), ˇIg,h).

The above, (8) and (10) imply d̄(β(a), Ig,h) ≥ 1
3 (m

r − 4
lt

) > m
6r . ¥
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Lemma IV.2. Assume that

(17) d̄(β(a′), Ig′,h′ [s′, s′ + rlr − 1]) < δ, where 0 < δ < min{m

6r
,

1
2r

,
1
16
},

and s′ is as in (9), a′, g′, h′ ∈ G, u′ = u′1 + u′2l + . . . + u′rl
r−1. Then either i′ = 0

or i′ = r − 1, and

(18) u′1 ≡ . . . ≡ u′r ≡ p mod n for some p ∈ Zn.

Additionally,

(19) d̄(β(a), Ig,h[s′, s′ + rlr − 1]) ≥ m

8r
ν,

for any a, g, h ∈ G, where ν = u′
lr if i′ = 0 and ν = 1− u′

lr if i′ = r−1. Furthermore,
Case 1◦: if i′ = 0 then

(20) a′ − g′ = p(e1 + . . . + em) and u′ < 4lr(δ +
1
l
).

If g − a 6= g′ − a′ then

(21) d̄(β(a), Ig,h[s′, s′ + rlr − 1]) ≥ (1− ν) +
m

8r
ν.

Case 2◦: if i′ = r − 1 then a′ − h′ = p(e1 + . . . + em) and u′ > lr(1 − 4δ − 1
l ). If

h− a 6= h′ − a′ then (21) holds.

Proof. The inequality δ < m
6r , (17) and Lemma IV.1. imply i′ = 0 or i′ = r − 1.

Assume that i′ = 0. Using (10), (14), (15) (with a′, g′, h′) we have

(22) d̄(β(a′), Ig′,h′ [s′, s′ + rlr − 1]) ≥ 1
3
(d̄(II, III)− 4

l
).

It is easy to see that i′ = 0 implies d̄(II, III) ≥ u′−1
lr . Thus (22) gives δ >

1
3 (u′−1

lr − 4
l ) which in turn implies that u′ < 4lr(δ+ 1

l ). This proves the second part
of (20).

To prove the remaining part of the Lemma let us remark that the last inequality
implies u′ < 1

2 lr because δ < 1
4 and 4

lt
< 1

4 ((8)). Then using (1f) we get

d̄(βi(a′)[0, lr − u′ − 1], βi(g′)[u′, lr − 1])

≤ rlr

lr − u′
d̄(β(a′), Ig′,h′ [s′, s′ + rlr − 1]) < 2rδ < 1,

for every 1 ≤ i ≤ r. Thus there exists at least one u, 0 ≤ u ≤ lr−u′−1 (depending
on i) such that βi[u]+a′ = βi[u+u′]+ g′. This equality and (6) (for u and u′) give

(23) u′1
(i)

e1 + . . . + u′m
(i)

em = a′ − g′.

Then using (7) we obtain (18), which with (23) implies that a0−g0 = p(e1+. . .+em).
This completes the proof of (20).
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Now we will prove (19) and (21). Using the same arguments as before we get
that the equality βi[u] + a = βi[u + u′] for every 0 ≤ u ≤ lr − u′ − 1 is equivalent
to the condition u′1

(i)
e1 + . . . + u′m

(i)
em = a − g. This equivalence and (23) then

imply

(24) d̄(IIIi, IVi) =
{

0 if g − a = g′ − a′,
1 if g − a 6= g′ − a′,

where IIIi = βi(a)[0, lr − u′ − 1], IVi = βi(g)[u′, lr − 1], 1 ≤ i ≤ r. Next, we need
the following evident property;

(25)
{

for arbitrary subblocks A1 l βi(g′), A2 l βi′(h′), i′ 6= i, 1 ≤ i ≤ m,
1 ≤ i′ ≤ r, h′, g′ ∈ H, such that |A1| = |A2| ≥ 4, we have d̄(A1, A2) ≥ 1

8 .

Let us examine the number u′. If p > 0 ((18)) then u′ ≥ lr−1 ≥ 4. If p = 0 and
u′ > 0 then n|u′i for 1 ≤ i ≤ r and again u′ ≥ n ≥ 4. Denoting

Vi = βi(a)[lr − u′, lr − 1], VIi = βi+1(g)[0, u′ − 1], 1 ≤ i ≤ m,

we have
|Vi| = |VIi| = u′ ≥ 4.

It follows from (25) that

(26) d̄(Vi, VIi) ≥ 1
8

for 1 ≤ i ≤ m.

Using (1d), (1e) and (26) we get
d̄(β(a), Ig,h[s′, s′ + rlr − 1]) ≥

1
r

[
(1− u′

lr )
∑r

i=1 d̄(IIIi, IVi) + u′
lr

∑m
i=1 d̄(Vi, VIi)

]
≥ m

8r
u′
lr .

If in addition g − a 6= g′ − a′ then (24) and (26) imply (21). This proves Case
1◦. The proof of Case 2◦ is similar. ¥
Lemma IV.3. Let s′1 = q′rlr + i′lr + u′, l = lt, 0 ≤ q′ ≤ pt − 1, 0 ≤ i′ ≤ r − 1,
0 ≤ u′ ≤ lr − 1, and let

(27) Ĩg′,h′ = bt(g′)bt(h′)[s′1, s
′
1 + ptrl

r − 1].

Assume that d̄(bt(a′), Ĩg′,h′) < δ, where 0 < δ < 1
3 min{m

6r , 1
2r , 1

16}. Then u′1 ≡
. . . ≡ u′r ≡ p mod n for some p ∈ Zn and either i′ = 0 or i′ = r−1. If s′1 ≤ 1

2ptrl
r

then a′−g′ = hp; and if s′1 ≥ 1
2ptrl

r then a′−h′ = hp, where hp = p(e1 + . . .+em).

Moreover, putting ν = u′
lr if i′ = 0 and ν = 1 − u′

lr if i′ = r − 1, ζ = q′

pt
if

s′1 ≤ 1
2ptrl

r and ζ = 1− q′

pt
if s′1 ≥ 1

2ptrl
r, we have:

Case 1◦: if i′ = 0 then u′ < lr(4δ + 1
l ) and

(28) d̄(bt(a), Ĩg,h) ≥ m
8r ν for a, g, h ∈ H,

(29) d̄(bt(a), Ĩg,h) ≥ m
8r ν + (1− ν)(1− ζ) if g − a 6= hp and h− a = hp,

(30) d̄(bt(a), Ĩg,h) ≥ m
8r ν + (1− ν)ζ if g − a = hp and h− a 6= hp,

(31) d̄(bt(a), Ĩg,h) ≥ m
8r ν + (1− ν) if g − a 6= hp and h− a 6= hp.
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Case 2◦: if i′ = r − 1 then u′ > lr(1− 4δ − 1
l ) and (28− 31) hold.

Proof. Using (1d) and (1e) we obtain

(32)
d̄(bt(a′), Ĩg′,h′) = (1− q′−1

pt
)d̄(β(a′), Ig′,g′ [s′, s′ + rlr − 1])

+ q′

pt
d̄(β(a′), Ih′,h′ [s′, s′ + rlr − 1])

+ 1
pt

d̄(β(a′), Ig′,h′ [s′, s′ + rlr − 1]),

where s′ = i′lr + u′. Assume that s′1 ≤ 1
2ptrl

r. Then 1− q′−1
pt

≥ 1
3 and using (27),

(32), we obtain the inequality d̄(β(a′), Ig′,g′ [s′, s′ + rlr − 1]) < 3δ. Then Lemma
IV.1. implies i′ = 0 or i′ = r − 1. Now, we apply Lemma IV.2. with a′, g′ and
h′ := g′. We then have u′1 ≡ . . . ≡ u′r ≡ p mod n and a′ − g′ = hp. If i′ = 0 then
u′ < lr(4δ + 1

l ). Further (19) and (32) imply (28). Similarly (29), (30) and (31) are
consequences of (19), (21) and (32).

If i′ = r − 1 then u′ > lr(1− 4δ − 1
l ) and the proof of the remaining part of the

Lemma is the same. ¥
Lemma IV.4. Let C, D be blocks over H such that |C| = |D| + 1, |D| = k ≥ 1.
Let 0 ≤ s′ ≤ ptrl

r − 1, l = lt and

I = bt ×D, II = (bt × C)[s′, s′ + kptrl
r − 1]).

Assume that d̄(I, II) < δ, where 0 < δ < 1
3 min{ m

16r , 1
2r , 1

16}. Then there exists
p ∈ Zn such that

(33)





d̄(D(hp), C[0, k − 1]) < δ,
or
d̄(D(hp), C[1, k]) < δ,

where

(34) hp = p(e1 + . . . + em).

Proof. We let Ij = bt(D[j]), IIj = bt(C[j])bt(C[j + 1])[s′, s′ + ptrl
r − 1], for 0 ≤

j ≤ k − 1. Then applying (1d) we deduce that

(35) d̄(I, II) =
1
k

k−1∑

j=0

d̄(Ij , IIj) < δ,

so there exists a 0 ≤ j0 ≤ k − 1 such that d̄(Ij0 , IIj0) < δ. Let us suppose that
s′ ≤ 1

2ptrl
r. Then Lemma IV.3. implies that D[j0] − C[j0] = hp for some p ∈ Zn.

Let {Z0 = {0 ≤ j ≤ k − 1 : D[j]− C[j] 6= hp},
Z1 = {0 ≤ j ≤ k − 1 : D[j]− C[j + 1] 6= hp}.

Then using (35), defining for shortness d̄j := d̄(Ij , IIj), 0 ≤ j ≤ k − 1, we obtain

(36) δ > d̄(I, II) =
1
k


 ∑

j∈Z0∩Z1

d̄j +
∑

j∈Z0\Z1

d̄j +
∑

j∈Z1\Z0

d̄j +
∑

j /∈Z0∪Z1

d̄j


 .
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Using (28− 31) we get
d̄(Ij , IIj)) ≥ m

8r ν + (1− ν) if j ∈ Z0 ∩ Z1,

d̄(Ij , IIj)) ≥ m
8r ν + (1− ν)ζ if j ∈ Z1 \ Z0,

d̄(Ij , IIj)) ≥ m
8r ν + (1− ν)(1− ζ) if j ∈ Z0 \ Z1,

d̄(Ij , IIj)) ≥ m
8r ν if j /∈ Z0 ∪ Z1.

So (36) and the preceding four inequalities imply

(37)

{
δ > m

8r ν + 1−ν
k ((1− ζ)#Z0 + ζ#Z1)

≥ ν
(

m
8r − min{#Z0,#Z1}

k

)
+ min{#Z0,#Z1}

k .

It follows from the above calculations that δ > 1−ν
k min{#Z0,#Z1}so since

δ < m
16r , we obtain m

8r − min{#Z0,#Z1}
k > 0.

Thus with (37) we deduce that min{#Z0,#Z1}
k < δ. Finally let us observe that

min{#Z0,#Z1}
k = min{d̄(D(hp), C[0, k − 1]), d̄(D(hp), C[1, k])}, from which (33) fol-

lows. ¥
Corollary IV.1. Under the assumptions of Lemma IV.4., if additionally we as-
sume that 4δk < 1, then D(hp) = C[0, k − 1] if ζ ≤ 1

2 and D(hp) = C[1, k] if
ζ > 1

2 .

Proof. If follows from the definition of ν (Lemma IV.2.) that 1−ν ≥ 1
2 if 4δ+ 1

lt
< 1

2

(use also (8)). Then (37) implies δ > #Z0
4k if ζ ≤ 1

2 and δ > #Z1
4k if ζ > 1

2 . Thus
either #Z0 = 0 or #Z1 = 0. ¥
Lemma IV.5. Let C,D be blocks over H such that k = |D| ≥ 1 and |C| = |D|+1.
Let 0 ≤ s̃ ≤ nt − 1 and Ĩ = Bt ×D, ĨI = (Bt × C)[s̃, s̃ + knt − 1]). Suppose that

(38) d̄(Ĩ , ĨI) < δ where 0 < δ <
1
3

min{ m

16r
,

1
2r

,
1
16
}.

Then there exists p ∈ Zn such that

(39)





d̄(D(hp), C[0, k − 1]) < δ,
or
d̄(D(hp), C[1, k]) < δ,

where hp is defined by (34).

Proof. We use an induction argument on t. For t = 0 the Lemma follows from
Lemma IV.4.. So let us suppose that (39) is true for t − 1 and assume that (38)
holds for t.

We have Bt×C = Bt−1×(bt×C), Bt×D = Bt−1×(bt×D), and s̃ = s̃1nt−1+s̃2,
where 0 ≤ s̃1 ≤ λt − 1, and 0 ≤ s̃2 ≤ nt−1 − 1.

So let D1 = bt ×D and C1 = bt × C[s̃1, s̃1 + λt(k + 1) − 1]. Then (38) can be
rewritten as d̄(Bt−1 ×D1, (Bt−1 × C1)[s̃2, s̃2 + knt − 1]) < δ. Using the induction
hypothesis we obtain
(40) d̄(D1(hp1), C1[0, kλt − 1]) < δ,
or
(41) d̄(D1(hp1), C1[1, kλt]) < δ,
for some p1 ∈ Zn. Let us suppose for instance that (40) is holding. Then it can
be rewritten as d̄((bt ×D)(hp1), (bt ×C)[s̃1, s̃1 + kλt − 1]) < δ. Then Lemma IV.4.
implies that either d̄(D((hp1))(hp2), C[0, k−1]) < δ or d̄((D(hp1))(hp2), C[1, k]) < δ
for some p2 ∈ Zn. Letting p = p1 +p2, these two last eventualities read as (39). ¥
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IV.2. Special subsequences and subblocks of ω.
To estimate the numbers tδ(A,ω) for the blocks A appearing in ω we distinguish

special subsequences of ω and then we examine the possible appearances of all long
enough blocks in those subsequences.

Every fragment Ij := ω[jnt, (j + 1)nt − 1], j ≥ 0, is of the form Bt(h) for some
h ∈ H. So by a t-symbol of ω we mean a fragment of ω like Ij , that corresponds to
a block Bt(h).

Given a fragment A = ω[q, q + s− 1] of ω we define

Aδ = ω[q − δs, q + s + δs− 1],

where 0 < δ < 1
2 .

Gathering the t-symbols Bt(h) from their natural positions (like for Ij) we can
define disjoint subsequences ωt(h) of ω, h ∈ H. Precisely, let Nh = {j ≥ 0 : Ij =
Bt(h)} and put ωt(h) = ∪j∈Nh

Ij . In the same way we define

(41a) ωδ
t (h) = ∪j∈Nh

Iδ
j .

Other natural subblocks of ω that we need to distinguish are the blocks

Et,i(h) = Bt × βt+1,i(h), 1 ≤ i ≤ r, h ∈ H.

Then every fragment IIj = ω[jntl
r
t+1, (j + 1)ntl

r
t+1 − 1], j ≥ 0, is equal to some

Et,i(h), for some 1 ≤ i ≤ r, h ∈ H. Then we define additional subsequences of ω
as follows:

(41b)





Ni(h) = {j ≥ 0 : IIj = Et,i(h)},
ωt+1,i(h) = ∪j∈Ni(h)IIj ,

ωδ
t+1,i(h) = ∪j∈Ni(h)IIδ

j .

The blocks

Lt,i,g :=
lr−i+1 times︷ ︸︸ ︷
g . . . . . . g , l = lt+1, i = m + 1, . . . , r, g ∈ H,

also appear naturally in ωt+1. Any block βt+1,i(h) is a concatenation of the blocks
Lt,i,g, where g runs over H; moreover,

fr(Lt,i,g, βt+1,i(h)) =
1

nm
, g, h ∈ H, m + 1 ≤ i ≤ r.

Define Mt,i,g = Bt × Lt,i,g, m + 1 ≤ i ≤ r, g ∈ H. The blocks Mt,i,g appear in
ω at the positions jntl

r + slr−i+1, l = lt+1, j ∈ Ni(h), 0 ≤ s < li−1, h ∈ H. Let
us denote and define the following:

IIIj,s = IIIt,j,s = ω[jntl
r + slr−i+1, jntl

r + (s + 1)lr−i+1 − 1],
j ∈ ∪h∈HNi(h), 0 ≤ s < li−1,

(41c)





Ni,g = {(j, s) : j ∈ ∪h∈HNi(h), 0 ≤ s < li−1, IIIj,s = Mt,i,g},
ωt+1,i,g = ∪(j,s)∈Ni,g

IIIj,s,

ωδ
t+1,i,g = ∪(j,s)∈Ni,g

IIIδ
j,s.
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The subsequences defined above ((41a − c)) enjoy the following properties (for
fixed t ≥ 0):

(42)
{

ωt(h) are pairwise disjoint when h runs over H, ∪h∈Hωt(h) = ω,
and D(ωt(h), ω) = 1

nm , h ∈ H,

(43)
{

ωt+1,i(h) are pairwise disjoint when h runs over H and 1 ≤ i ≤ r,
∪h∈H ∪r

i=1 ωt+1,i(h) = ω, and D(ωt+1,i(h), ω) = 1
rnm ,

(44)
{

ωt+1,i,g are pairwise disjoint when g runs over H and m + 1 ≤ i ≤ r,
∪g∈Hωt+1,i,g = ∪h∈Hωt+1,i(h), and D(ωt+1,i,g, ω) = 1

(r−m)nm .

Until the end of the paper, we shall assume that δ and t satisfy

(45) δnt ≥ 4 and δlt+1 ≥ 4.

Now, we classify the subblocks A l ω such that |A| ≥ 3n0. For every such block
there exists a unique t ≥ 0 such that

(46) A = E1(Bt × C)E2,

where |C| ≥ 1, C l bt+1(g′)bt+1(h′) for some g′, h′ ∈ H such that (g′)(h′) l ωt+2,
E1 (resp. E2) is a right-hand side (resp. a left-hand side) of a t-symbol.

Given δ > 0 and t ≥ 0 satisfying (45), we define three subsequences ω̃1, ω̃2, ω̃3 of
ω by 


ω̃t,1 = ω̃1 = ∪j≥0ω[(j − δ)nt, (j + δ)nt],
ω̃t,2 = ω̃2 = ∪j≥0ω[(j − δ)lrt+1, (j + δ)lrt+1],
ω̃t,3 = ω̃3 = ∪j≥0ω[(j − δ)lt+1, (j + δ)lt+1].

Notice that D(ω̃1 ∪ ω̃2 ∪ ω̃3, ω) ≤ 6δ, where ω̃1 ∪ ω̃2 ∪ ω̃3 denotes the obvious
subsequence of ω. We shall examine blocks (46) satisfying the additional condition

(47) A ∩ (ω \ (ω̃1 ∪ ω̃2 ∪ ω̃3)) 6= ∅.
We now distinguish six classes K1, . . . ,K6 for blocks of the form (46) that are

such that any A satisfying (47) belongs to at least one of these classes:

(A) A ∈ K1 iff |C| ≤ 3,

(B) A ∈ K2 iff |C| ≥ 4 and C l βδ
t+1,i(h

′) where h′ ∈ H and 1 ≤ i ≤ m,

(C)





A ∈ K3 iff C l β(g′)β(g′), β := βt+1, ∃C1C2 l C,
|Cj |
|βi| > δ, j = 1, 2, C1 l βi(g′),
C2 l βi+1(g′), 1 ≤ i ≤ m, or i = r and r + 1 := 1, g′ ∈ H,

(D)
{

A ∈ K4 iff C l β(g′)β(g′), β := βt+1, C l Lδ
t,i′,g′L

δ
t,i′,h′ ,

|C| ≥ 4, m + 1 ≤ i′ ≤ r, g′, h′ ∈ H, g′ 6= h′,

(E)





A ∈ K5 iff C l β(g)β(g), β := βt+1, for some g ∈ H,
and there are at least three blocks Lt,i,g′ , Lt,i,h′ , Lt,i,f ′

such that fr(Lt,i,g′ , C) > δ, fr(Lt,i,h′ , C) > δ, fr(Lt,i,f ′ , C) > δ,
where g′, h′, f ′ are pairwise distinct,

(F) A ∈ K6 iff βt+1(g′) l C for some g′ ∈ H.
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IV.3. Theorem (m, r).
Let δ0 = min{m

8r , 1
2r , 1

16}, A be as in (47) and I = ω[q, q + |A| − 1]. We shall
estimate tδ′(A,ω).

Lemma IV.6. Assume that d̄(A, I) < δ, 0 < δ < 1
9δ0, lt ≥ 4 and A ∈ K1 (cf.

(A)). Then I l ∪h∈HA
ω3

t (h), where HA ⊂ H with #HA ≤ n. Hence tδ(A, ω) ≤
7

nm−1 + 6δ.

Proof. Let q1 = |E1| (q1 < nt), and k = |C|. Using (1f) we have 3δ > 3d̄(A, I) ≥
d̄(Bt × C,ω[q + q1, q + q1 + knt − 1]). So applying Lemma IV.5. we get

(48) d̄(Bt × C, ω[snt, (s + k)nt − 1]) < 3δ,

where |snt − q − q1| ≤ nt. This implies

(49) |snt − q| < 2nt.

Next, (48) gives d̄(C, ωt+1[s, s + k − 1]) < 3δ, and Corollary IV.1. (it holds that
4kδ < 1) implies that either C(hp) = ωt+1[s, s+k− 1] or C(hp) = ωt+1[s+1, s+k]
for some p ∈ Zn. Putting p1 = C[1] + hp if |C| = 3 and C[0] + hp if |C| ≤ 2, we get
that either ωt+1[s + 1] = p1 (if k = 3) or ωt+1[s] = p1 (if k ≤ 2).

Assume that k = 3 for instance. The equality ωt+1[s + 1] = C[1] + hp means
that the fragment ω[(s + 1)nt, (s + 2)nt − 1] l ∪p∈Znωt(C[1] + hp). Taking into
consideration two neighbouring t-symbols from the right and left sides, plus the
blocks E1 and E2, we deduce that I l ∪h∈HA

ω3
t (h) where #HA ≤ n.

In the case k ≤ 2 we obtain the same conclusion. Using (42) and (47) we deduce
that tδ(A,ω) ≤ 7n

nm + 6δ = 7
nm−1 + 6δ. ¥

Lemma IV.7. Assume that d̄(A, I) < δ2

6 , 0 < δ < 1
9δ0, and A ∈ K2 (see (B)).

Then I l ∪h∈Hω
(2δ)
t+1,i(h). Hence t δ2

6
(A,ω) ≤ 1+4δ

r + 6δ.

Proof. The same arguments than those appearing in Lemma IV.6. lead to
d̄(C, ωt+1[s, s + k − 1]) < δ2

2 . The conditions (47) and δlt+1 ≥ 4 imply that C

contains a subblock C̃ such that |C̃|
|C| ≥ 1

2 and C̃ l βt+1,i(h′) for some h′ ∈ H.

Hence d̄(C̃, ω[s1, s1 + |C̃| − 1]) < δ2, where s1, . . . , s1 + |C̃| − 1 are the positions of
C̃ in C.

Writing C and ω[s, s + k − 1] instead of C̃ and ω[s1, s1 + |C̃| − 1] respectively,
suppose that ωt+1[s, s+k−1] contains a subblock D1 such that |D1| ≥ 4, |D1|

k > δ,
D1 l ∪h∈Hωt+1,i(h) and i 6= i′. Denoting by C1a subblock of C appearing at the
same positions as D1 in ωt+1[s, s + k − 1] and using (1f) we get
δ2 > d̄(C, ωt+1[s, s + k − 1]) ≥ |D1|

k d̄(C1, D1) > δd̄(C1, D1),
what gives d̄(C1, D1) < δ. However the property (25) says that d̄(C1, D1) ≥ 1

8 .
Hence either |D1|

k < δ or |D1| ≤ 3. In both cases this means that Bt × ωt+1[s, s +
k − 1] l ∪h∈Hωδ

t+1,i(h) because k ≤ |βi| and 3
lrt+1

< δ (cf. (45)). Enclosing the

(wings) blocks E1, E2 we obtain I l ∪h∈Hω2δ
t+1,i(h) on the base of (49) and the

inequality 2
nt

< δ.
We conclude as in the above Lemma, using (47) and (43), to obtain t δ2

6
(A,ω) ≤

1+4δ
r + 6δ. ¥
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Lemma IV.8. Let d̄(A, I) < δ3

36r , 0 < δ < 1
9δ0, and assume A ∈ K3 (see (C)).

Then either
(50) I l ∪h∈HA

ω
(2δ)
t+2 (h), #HA ≤ n, then t δ3

36r

(A,ω) ≤ 1+4δ
nm−1 + 6δ,

or
(51) I l ∪h∈Hω

(2δ)
t+1,i′(h), i′ = i or i′ = i + 1, then t δ3

36r

(A, ω) ≤ 1+4δ
r + 6δ,

where i is defined in (C).

Proof. As before we have d̄(C, ωt+1[s, s+k−1]) < δ3

12r . Let D1 and D2 be subblocks
of ωt+1[s, s + k − 1] occupying the same positions in it as C1 and C2 do in C,
respectively. Then we have |Cj |

|C| = |Cj |
|βi|

|βi|
|C| ≥ δ

2r . Hence

(52) d̄(C1, D1) <
δ2

6
and d̄(C2, D2) <

δ2

6
.

It follows from the proof of Lemma IV.7. that D1 l ∪h∈Hω
(2δ)
t+1,i(h) and D2 l

∪h∈Hω
(2δ)
t+1,i+1(h) (these last inclusions are also valid for i = m and i = r). From the

above inclusions we deduce that D1D2 l β
(2δ)
t+1,i(g1)β

(2δ)
t+1,i+1(g1) for some g1 ∈ H.

If in addition D1 l β
(2δ)
t+1,i(g1) (or D2 l β

(2δ)
t+1,i+1(g1)) then (51) holds. If not then

(53) D1D2 l β
(2δ)
t+1,i(g1)β

(2δ)
t+1,i+1(g1)

Further, (1c, e) and (52) imply d̄(bt × C1C2, bt × D1D2) < δ2

3 . Applying Lemma
IV.4. we deduce
(54) d̄((C1C2)(hp), (D1D2)[0, |C1C2| − 1]) < δ2

3 , or

(55) d̄((C1C2)(hp), (D1D2)[1, |C1C2|]) < δ2

3 , for some p ∈ Zn.
Suppose that (54) holds. Then we can write C1 = E(g0), C2 = E′(g0), D1 =

E(g1), D2 = E′(g1), where E is a subblock of the right side of βi and E′ comes
from the left side of βi+1. Thus (54) has a form d̄((EE′)(g0 +hp), (EE′)(g1)) < δ2

3 .
Hence we must have g1 − g0 = hp. Putting HA = {g0 + hp : p ∈ Zn}, we deduce
from (53) that (50) is satisfied. In the same way we deduce (50) from (55). If (50)
holds then using (42) and (47) we have t δ3

36r

(A,ω) ≤ 1+4δ
nm−1 + 6δ. Else for (51) we

use (43) instead of (42) and deduce t δ3
36r

(A,ω) ≤ 1+4δ
r + 6δ. ¥

Lemma IV.9. Let d̄(A, I) < δ
2 , 0 < δ < 1

9δ0, and A ∈ K4 (see (D)). Then
(56) I l ∪r

i=m+1ω
(1+2δ)
t+1,i,g′ for some g′ ∈ H. Hence t δ

2
(A,ω) ≤ 3+4δ

nm + 6δ

Proof. The assumptions of the Lemma imply

(57) d̄(C,ωt+1[s, s + k − 1]) <
δ

2
.

First assume that C l Lt,i0,g′ . Then (57) implies directly that ωt+1[s, s + k− 1] l
ωt+1,i0,g′ for some m + 1 ≤ i0 ≤ r. Using the same arguments as in the preceding
Lemmas we get I l ∪r

i=m+1ω
(2δ)
t+1,i,g′ .

Now assume that C l Lδ
t,i0,g′L

δ
t,i0,h′ . The conditions (47) and the inequality

δlt+1 ≥ 4 imply that C contains a subblock C1 such that |C1|
|C| ≥ 1

2 and C1 l Lt,i,g′′ ,
where g′ = g′ or h′. Repeating the above arguments we obtain I1 = (Bt × C1) l
∪r

i=m+1ω
(2δ)
t+1,i,g′ . This implies (56). Then (47) and (44) imply that t δ

2
(A,ω) ≤

3+4δ
nm + 6δ. ¥
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Lemma IV.10. Let d̄(A, I) < δ2

18 , 0 < δ < 1
9δ0, A ∈ K5 (see (E)). Then

(58) I l ∪h∈HA
ω

(2δ)
t+2 (h), #HA ≤ n. Hence t δ2

18
(A, ω) ≤ 1+4δ

nm−1 + 6δ.

Proof. As before we obtain
(59) d̄(C,ωt+1[s, s + k − 1]) < δ2

6 .
Let us assume that C contains exactly three kinds of subblocks Lt,i,g′ , Lt,i,h′ , Lt,i,f ′ ,
each appearing in its natural positions. Let C1, C2, C3 be the families of all subblocks
Lt,i,g′ , Lt,i,h′ , Lt,i,f ′ of C appearing at their natural positions. Each of C1, C2, C3 is
a union of disjoint subblocks of C.

We pick subblocks D1, D2, D3 from ωt+1[s, s + k − 1] occupying in it the same
positions as the blocks C1, C2, C3 from the families C1, C2, C3 do in C, respectively.
They define the families D1,D2,D3. For each Cj ∈ Cj , we let Dj(Cj) denote the
block of Dj appearing in the same positions as Cj , for j = 1, 2, 3. Then we define

d̄(Cj ,Dj) :=
1

#Cj

∑

Cj∈Cj

d̄(Cj , Dj(Cj)).

Then (59) implies d̄(Cj ,Dj) < δ
2 , 1 ≤ j ≤ 3. It is not hard to deduce that I l

ω
(2δ)
t+2 (h) for some h ∈ H. Let g be another element of H such that I l ω

(2δ)
t+2 (g).

Then using Lemma IV.4. and repeating the arguments of the proof of Lemma IV.8.
we obtain g − h = hp for some p ∈ Zn. This implies (58). The same arguments
apply to the case where C contains more than three blocks of the form Lt,i,g′ .

Then using (42) and (47) we deduce that t δ2
18

(A,ω) ≤ 1+4δ
nm−1 + 6δ. ¥

Lemma IV.11. Let d̄(A, I) < δ2

18 , 0 < δ < 1
9δ0, and A ∈ K6 (see (F )). Then

(60) I l ∪h∈HAω
(2δ+2)
t+2 (h), #HA ≤ n. Hence t δ2

18
(A,ω) ≤ 5+4δ

nm−1 + 6δ.

Proof. Using the same arguments as in the (numerous) preceding Lemmas we prove
that C contains a subblock C1 such that |C1|

|C| ≥ 1
2 , and C1 contains at least one

block βt+1(g′), and C1 l bt+1(g′) (or C1 l bt+1(h′)). Then
(61) d̄(C1, D1) < δ

3 ,
where D1 is defined in the same way as the one in the proof of Lemmas IV.8.,
IV.10.. Then (61) implies that
(62) D1 l bt+1(g) for some g ∈ H.
Then we use Lemma IV.4. to deduce that g − g′ = hp for some p ∈ Zn. This, with
(62), implies (60). Then (47) and (42) imply t δ2

18
(A, ω) ≤ 5+4δ

nm−1 + 6δ. ¥

Theorem (m, r). The system (X × H,TϕH , µ ⊗ mH) is such that r(TϕH ) = r,
m(TϕH ) = m, and the essential range of its multiplicity function is {1, . . . ,m}. It
is measure theoretically isomorphic to a strictly ergodic continuous Morse automor-
phism.

Proof. Let 0 < δ2 < 1
9δ0 and let δ1 = δ3

2
36r . Then select t0 such that δ2nt0 ≥ 4,

δ2lt0+1 ≥ 4. Let A l ω be a block such that |A| ≥ 3nt0 . Then A has a form (46)
with t ≥ t0. With Lemmas IV.6.-IV.11. we deduce that, using the fact that for
0 ≤ δ′ < δ, tδ(A, ω) ≥ tδ′(A,ω),

tδ1(A,ω) ≤ max{ 7
nm−1

,
1 + 4δ2

r
,
3 + 4δ2

nm
,
1 + 4δ2

nm−1
,
5 + 4δ2

nm−1
}+ 6δ2 := a.
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Hence F ?(TϕH
) ≤ a. We can select n and δ2 in order to ensure that a < 1

r−1 . Then
using I.4. we deduce that r(TϕH

) ≥ r. ¥
Remark IV.1. A “Chacon type” modification of the candidate to the (m, r) pair
(see II., IV.) can lead to a weakly mixing system realizing the pair (m, r) (2 ≤ m ≤
r < ∞). Namely, we define the base system (X,T, µ) as follows (it shall no longer
be an adic adding machine):
1): pick λ0, λ1, . . . as in II.;
2): define the generating partition of the continuous Lebesgue probability space
(X,µ) inductively as to be a refining sequence (ξt)t≥0 of T -towers

ξt = (Dt
0, . . . , Dnt−1), TDt

i = Dt
i+1, 0 ≤ i ≤ nt − 2,

where n0 = λ0, µ(D0
i ) = 1

n0
(0 ≤ i < n0), and if ξt is defined, then we let

nt+1 = λt+1nt + 1, and

(
∪λt+1−2

j=0 Dt+1
jnt+i

)
∪Dt+1

nt+1−nt+i+1 = Dt
i , 0 ≤ i < nt,

and µ(Dt+1
u ) = 1

nt+1
, 0 ≤ u < nt+1.

3): define the sequence of blocks (bt)t≥0 exactly as in II. if m = r or IV. if m < r;
4): with the new sequence (nt)t≥0 from 2) above, define the blocks (Bt)t≥0 by
B0 = b0 and

Bt+1 = Bt(bt+1[0]) . . . Bt(bt+1([λt+1 − 2])0Bt(bt+1[λt+1 − 1]);

5): let the M-cocycle ϕ : X → H (H = G if m = r) be defined by ϕ|Dt
i

=
Bt[i + 1]−Bt[i], 0 ≤ i < nt − 1.

Then (nt)t≥0 is a rigid time for T , and following the argumentation from [KwJLe,
Sec. 4], (X ×H, Tϕ, µ⊗mH) is seen to be weakly mixing with the desired spectral
multiplicity equal to m. As is seen along the lines of [Kw] or [Le], the system has
a strictly ergodic shift representation (Ωω, S, µω) where ω ∈ HN is defined by

ω[0, nt − 1] = Bt, t ≥ 0.

The computation of its rank uses this symbolic representation and may be done in
a closely similar way to what was done in III. and IV..
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