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ABSTRACT. For any pair (m,r) such that 2 < m < r < oo, we construct an ergodic
dynamical system having spectral multiplicity m and rank r. The essential range
of the multiplicity function is described. If r > 2, the pair (m,r) also has a weakly
mixing realization.
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0. Introduction.

Given a dynamical system (X, u, T) one associates to it a measure theoretic in-
variant, the rank r(7"), and a spectral invariant, the multiplicity m(T"). The pair
(m(T),r(T)) is such that 1 < m(T) < r(T) < 0.

It was conjectured in [M1] that for any such pair of integers (or co), there exists
an ergodic system (X, u, T') realizing it. Pairs (1,1) where constructed in [Ch], (1, 2)
in [dJ], (1,7) in [M1], (2,7) in [GoLe], (r,r) in [R1,2], (r,2r) in [M2], (p — 1,p) in
[FeKw] and (1,00) in [LeSi], [Fe]. Gaussian-Kronecker systems allways realize the
pair (1,00) ([dIR]). The latest result of this series is a density theorem [FeKwMa]
proving that given m, the set of r’s such that the pair (m,r) is realizable has density
1.

In this note we construct realizations of pairs (m,r) with 2 < m < r < oc.
The pair (00, 00) however is realized with any ergodic system of positive entropy.
Thus, together with [M1], we prove that all pairs (m,r) with 1 <m <r < co are
obtainable.

The transformations we use are continuous Morse automorphisms over a finite
abelian group (see I. for the preliminaries). These systems however have partly
discrete spectrum.

However the same pairs (m,r) can be obtained within the class of weakly mix-
ing systems. We give to this end some hints in Remark IV.1., but for the sake
of simplicity, computations are only carried out with full details for the Morse
automorphismes.

Our examples (see IL.) sit in the class of so called natural factors of a compact
abelian group extension ([KwJLe]).

We first construct an ergodic group extension (X x G,T,,u ® mg) realizing
the pair (r,7). Next we produce a natural factor (X x H,T,, ,u ® mpg), where
H = G/Hg is a quotient group.

Using methods developed in [KwJLe] we compute the spectral multiplicities of
the systems: the ones of the natural factor decrease. But surprisingly the ranks of
the natural factors remain equal to the rank of the initial system, r.

The systems have a continuous Morse shift representation which we use for the
rank computations. In Section III. we prove the following for 2 < r < oo:

Theorem (r,7). The system (X xG,T,, p@mge) satisfies r(T,) =r =m(Ty,), and
the essential range of its multiplicity function is {d : d|r}. It is measure theoretically
isomorphic to a strictly ergodic continuous Morse automorphism.

If 2 <m < r < 0o, passing to the natural factor (X x H, Ty, , p®@mp), we prove
in section ITL. that m(T,,) = m while in section IV. we prove that its rank is 7,
by proving that its covering number satisfies F*(T,,,,) < T_% We obtain:

Theorem (m,r). The system (X x H,T,,,p Q@ mg) is such that r(T,,) = r,
m(T,,;) = m, and the essential range of its multiplicity function is {1,... ,m}. It
is measure theoretically isomorphic to a strictly ergodic continuous Morse automor-
phism.

I. Preliminaries.

Throughout this paper G shall denote an additive abelian finite group, and €2
the space of bi-infinite sequences taking values in G.



MULTIPLICITY, RANK PAIRS 3

I.1. Blocks and operations on blocks.

A finite sequence B = B[0]...B[k — 1], B[i] € G, k > 1, is called a block over G.
The number k is called the length of B and denoted |B|. If w € Q (or w is a one-
sided sequence over G) and B is a block then w(i, s] and B[i,s] (0<i<s<k-—1)
denote the blocks wli]...w[s] and Bli]...B[s] respectively. If C' = C[0]...C[f — 1] is
another block then the concatenation of B and C' is the block

BC = B|0]...B[k — 1]C[0]...C[f — 1].
Concatenation extends to more than two blocks in the obvious way. We define also
for q € Z,

Ifv: G — G is a group automorphism, let v(B) be the block
v(B) = v(BI0])...v(Blk — 1]).
If g € G, by B(g), we will denote the block B+g = B(g) = (B[0]+g)...(B[k—1]+g).
Then v(B(g)) = v(B)(v(g)), g € G. Finally, we define the product B x C of B and
C as follows (|C| = f):
B x C = B(C[0))...B(C[f —1]).

“ b2

As for concatenation, this multiplication operation “x” is extended to more than
two blocks, and is associative.

1.2. Occurrences, frequencies, density, d distance.

The block B is said to occur at place i in w (resp. in C as above (k < f)) if
wli,i + |B| — 1] = B (resp. C[i,i + |B| — 1] = B). We shall write B < w (resp.
B < C) when this happens for some position i.

The frequency of B in C' (resp. in w) is the number

fr(B,C) = |C|7'#{0 <i <|C| - |B| - 1; B occurs at place i in C},

(resp. fr(B,w) = lim fr(B,w[0,s — 1]) if this limit exists).

For a one sided infinite subsequence of w, E = {w[n],n € I C N}, we call the
density of F the corresponding density of the set I in N, and denote it by D(E,w)
(if it exists).

Let 6 > 0. We say that B J-occurs at place ¢ in C' (resp. in w) if

d(B,Cli,i+|B| —1]) <& (resp. d(B,wli,i+ |B| —1]) < §),
where -
ATy T, Y1yn) =0 0 # yi)
d is the normalized Hamming distance or d-bar distance between blocks. It has the
following properties:

(a) d(B(g),C(g9)) =d(B,C), g€ G,
(b) d(v(B),v(C)) = d(B,C),
(¢) d(BxC,BxD)= d(C7D)7
(d) d(Ai... Ay, By...Bg) = %Zf:l d(A;, B;)
(1) _ (|Al|:‘?]|’ 1<Z7j<k)7 B
(6) d(AlAQ, BlBg) = %d(Ah Bl) + %d(/lg, B2>
(|4il = |Bil, i =1,2),
(f) d(A,B) > Pgld(Ay, By) if A=A1Ay, B= BBy,
(9) ci(B,C) SCZ(B7A)+(2(A,C)
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If | B| > 2, we let B be the block of length |B| — 1 defined by
(2) Bli] = Bli+1] - B[i], 0<i <|B] - 2.
We shall also use the following property of the d distance;
(3) d(B,C) < 3d(B,0).

1.3. The dynamical system associated to a sequence.

We let S denote the left shift homeomorphism of Q or QU = (G U {O})%. If
w = w[0Jw[1]... is a one-sided sequence over G, we let wg be the element of QY
defined by wg[n] = wln] if n > 0, wo[n] = O otherwise. We then define

Q, ={y € Q:3(ny), ni — oo, y =1limS™wy}.

The topological flow (£2,,S) is minimal if there is no proper closed and S-
invariant subset of €,,. We say that (Q,S) is uniquely ergodic if there is a unique
borelian normalized S-invariant measure p, on Q. (€,5) is said to be strictly
ergodic if it is both minimal and uniquely ergodic (for short, we say that w is strictly
ergodic).

If w is strictly ergodic, then for each block B, and ¢ € Z,

tw([Blg) = fr(B,w),
where (Bl = {y € Q1 ylg,q +|B| - 1] = B}.

I.4. Rank and covering number of (€, 5, /).

For an ergodic dynamical system, the rank and the covering number are classical
measure theoretic invariants ([dJ], [Fe]). In the case of a symbolic strictly ergodic
system (9,5, 11,), we formulate their “combinatorial”definitions bellow.

Let A be a (finite) family of blocks and B a block such that |B| € {|A] : A € A},
we let

d(B,A) =min{d(B,A): Ac A, |A| = |B|}.

If A={A,...,Ar}, Cis ablock, and § > 0, we define

IC1] + ...+ |Cyl

ts(A,C) =ts(Aq,..., Ak, C) = max{ ] }

where the maximum is taken over all concatenations of the form

C=e0C1e...6Ch€Ep41

for which d(C;, A) < §, 1 <1i < p. Then we define, for a strictly ergodic one-sided
sequence w,

ts(Aw) = liminf t5(A, [0, N])(= lim t5(A,w[0, N])).

In particular, t5(A4,w) is defined for a block A. It is known ([dJ], [M2]) that in the
case under consideration the rank of (., 5, 1tw) s at most r if for any 6 > 0 and
any N € N, there exists A of cardinality  such that |A| > N, A € A, and

ts(A,w) >1—04.
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Then (Q,,, S, ptw) is of rank equal to r if it is of rank at most = but not at most
r — 1. The rank is a measure theoretic invariant. We denote it by r(S) or r,.

We say that the covering number F*(w) (also denoted by F*(5)) of w is at least
a(0<a<l)if

Vé>0,Vn>1, 3A, |Al >n, t;5(A,w) > a.

Then the covering number F*(w) is the supremum of such a’s. The covering number
is a measure theoretic invariant, and

ry - F*(w) > 1.

I.5. Adding machines and cocycles.
Let T : (X,B,u) — (X, B,u) be an (nt)-adic adding machine, i.e. ngngy1,
A1 = npq1/ng > 2 for t >0, Ao =ng > 2,

X:{x:Z gni—1: 0< g <X\ —1,n_1=1}
t=0

is the group of (n;)-adic numbers and Tz = z + 1, 1 = (1,0,0,...). The space X
has the standard sequence (&) of T-towers. Namely,
é-t - (D67...7Dt ),

ne—1

where
Di={zeX: qg=..=q =0}, T°(D})=D., s=0,....,n; — 1.

Then &1 refines & and the sequence of partitions (&) converges to the point
partition.

A cocycle is a measurable function ¢ : X — G. A cocycle ¢ defines an automor-
phism T, on (X x G,u® mg) by

Ty(z,9) = (Tz,g+o(z)), x€ X, g€,

where mg is the Haar measure of G. T, is ergodic iff for every non-trivial v € G
(G is the dual group), there is no measurable solution f : X — S* to the functional
equation

Vp(@)) = f(Tx)/f(z), z € X [Pal.

1.6. Morse cocycles (M-cocycles).

We say ¢ : X — G is an M-cocycle if for every ¢ > 0, ¢ is constant on each level
D! fori=0,1, ..., n; —2. Such a cocycle is defined by a sequence of blocks (A4¢);>0,
|A¢| = ny — 1, and

Ppt = Aili], i=0,1,...,ny — 2.

Now we describe Morse sequences (M-sequences). Let by, by, ... be finite blocks
with |by| = A¢, b:[0] = 0, ¢ > 0. Then we may define a one-sided sequence by

w:b()Xle...
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Such a sequence is called a generalized Morse sequence over G if it is not periodic
and if each of the sequences

Wy = bt X bt+1, veey t> O7

contains every symbol in G. By grouping some of the b;’s we can assume that each
block b; contains every symbol in G. When this is the case, it is known [Ma] that
(Q, S) is strictly ergodic if fr(g,b:) = #% for every g € G and t > 0. It is not
hard to observe that the condition

fr(g,be) > p>0, foreveryt >0, g€ G,

already implies the strict ergodicity of w.
A Morse sequence w allows one to define an M-cocycle ¢ = ¢, on X as follows:
let
By =bg x ... x by, t >0.

Then choose (A;)i>0 = (Bt)i>o0 (cf. (2)): it is easy to check that it defines an
M-cocycle ¢ as above.

It follows from [Kw] and [Le] that the dynamical systems (€, 5, 1) and (X x
G,T,,n ® mg) are measure theoretically isomorphic if w is strictly ergodic. We
finally define
7 eP)(z) = (@) +... +o(TP '), € X, p> 1.

Then gofg); =Bii+p —Biil, p>1, 0<i<ng—p— 1
1.7. Spectral multiplicity(ies) and continuous Morse sequences.

If w is a strictly ergodic Morse sequence over G, and ¢ = ¢, is the associated

M-cocycle, for v € G, we define

Ly={f®yeL*(X xG,pne@mg); feL*X,p)}

Let Ur, be the unitary operator induced by T, on L*(X x G,;u ® mg). The
subspaces L, are Ur,-invariant and we have the spectral decomposition

L*(X x G,p®@ma) = @ L.
'yEG‘

It is shown in [KwSi] that T, has simple spectrum on each L,. Let s, be the
spectral measure of Ty, on L,. It follows from [Ke| that any two of those p, are
either orthogonal or equivalent.

The essential range of the multiplicity function is then the subset of N consisting
of the cardinalities of the equivalence classes of the measures p., v € G. Tt is
a spectral invariant. The spectral multiplicity then coincides with the maximal
number of this set. We denote it by m(T,).

The subspace Ly (é := the trivial character) is generated by the eigenfunctions
of T, corresponding to all n;-roots of unity. A Morse sequence w is continuous
(or the M-cocycle ¢, is weakly mizing) if Ls contains all eigenfunctions of T,,, or
equivalently if each measure p.,, v # €, is continuous. The following is proved in
[IwLa]:
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Proposition 1.0. For a strictly ergodic M-sequence w over G, a sufficient condition
for it to be continuous is that #G|)\t, t>0.

I1.8. Preliminary results.
We know that the measures jiy,y € G, are either equivalent or orthogonal. We
shall use the following criterions to know which case holds:

Proposition 1.1 ([FeKw], [GoKwLeLi]). Ifw = by x by X ... is a strictly ergodic
Morse sequence, where for every t, by is of the form
bt = dtv(dt)...vk”l(dt),

where v is an automorphism of G, dy are blocks and k are integers such that
Zfio k% < 00, then piy > py(yy for all v in G, where v is the dual automorphism
towv.

Proposition 1.2 ([GoKwLeLi]). Additionally, if for given v, € G,

lim [ 4" (2)]dp and lim / 7l (@)]dp (see (4))
exist and differ from each other, then u, L [y (note that T™ — Idx in the weak
topology).

1.9. Quotient M-cocycle (sequence).
Let Hy be a subgroup of G, and H = G/HO be the quotient group. Let mpy :

G — H be the quotient map (a group homomorphism). If mpy denotes the Haar
measure on H, then the map
Py :=Idx x 7y : (X X G,Tv,,,u®mg) — (X X H,T¢H7/J®mH)
is a factor map (the natural factor map associated to the quotient group H).
For a block B over G, we define the block By over H by
By =7ng(B[0])...7g(B|[|B| —1]),
and for n € €, let ng be defined by

nu[n] =T (nn]), ne.

Using the obvious equality 7y (B x C) = g (B) x 7 (C), it is not hard to see that
if w="bgxby x...1is a M-sequence over G (we let ¢ be the corresponding M-
cocycle), then wy = bg,, X by, X ... and it is an M-sequence, over H. It determines
an M-cocycle pg which moreover satisfies

$H = TH O Q.

We now recall some facts from [KwJLe|: define L, g = {f®~: f € L*(X,u)} for
v E H. Then using the factor map Py, we can identify this Ur, , -invariant subspace
of L*(X x H,p ® mpy) with the Uy, -invariant subspace Ly of L*(X x G, ® mg)
defined in 1.7., where 7 € G is the unique element of G such that

?\Ho = é\Ho and’yOﬂ'H :’Ny

In fact if Vp, : Ly — L, g is defined by Vp, (f ® ) = f ® 7 then it provides a
unitary equivalence between the pairs (Ls, Ur,) and (L, Ur, ). The cyclicity
of the spaces L, g under the related unitary action remains, as in L.7..

So we obtain

Proposition 1.3. If the assumptions of Proposition I.1. hold, and v, € H are
such that 7,7 belong to a same O-trajectory, then iy > fi.
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II. The candidates for (m,r).

First of all we select G = Z! (direct product) and r < n (r > 2 is given). Some
conditions on n shall be specified in the proof of Theorem (m,r) (see IV.3).
For h € G, we write h = (hy,... ,h;), h; € Z,,. We let

e;=(0,...,0,1,0,...,0), 1<i<r.
N——
i—1 times

Then h = hie; + ... + hre,. Let v € Aut(G) be defined by
U(h) = (hrahla v ,hT,1)7 heaq.

Now we start defining some blocks (the goal is to define the blocks b;, ¢ > 0). Put,
for t > 0,

F1 = Ft,l = 061(261)...((Z—1)€1), l:lt7
F2 = Ft,2 = 062(262) N ((l — 1)62),
F. = F, = 0e(2¢)...(I—-1e,),

where n|l; and [; — co. Observe that |F;| = [l;, and that v(F;) = Fj41, 1 <i <,
where F,;1 := F}. Let

/61 = 6t,1 = Fi X Fyx...xFy,
B = Bra = Fax...xF. xF,
/67’ = 57&,7“ = F.xF x...xF._q.

Then |5;| = 1", and v(8;) = Bi+1, 1 < i < r, where similarly 3,11 := 1. Next let

B =0 =P1f2... B (concatenation) (= Bro(Br)...v" (1)),

and
p: times

—
by=p"=0...... G=pFwB)...... R (B,

where k; = rp;. We have |b;| = rpil] := A;. We choose the sequence (p;) such that
D ot>0 p—lt < o0o. Finally we let ny = A\g... A\ and By = by X ... X by as in I.6.. Let
w be the associated M-sequence over G and ¢ the related M-cocycle. Notice that
n7'|)\t.

Now given 2 < m < r, we define

{ Ho = {0} x Z5™,
H=G/y =2,

and let the subscript H denote the corresponding blocks, M-sequence, M-cocycle
as in L.9..
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Proposition I1.1. The sequence w is strictly ergodic and (€, S, p,) is measure
theoretically isomorphic to (X x G, Ty, ® mg). Moreover it is a continuous M-
sequence.

Proof. Using 1.6., we shall prove that for ¢ > 0,

f’f'(g,bt) = %

Looking more closely to the blocks b; it is seen that for g € G, fr(g, Bii) =

n“ 1<i<r. So fr(g,B:) = nr and fr(g,b;) = 77'
Since n |/\t, we may apply Proposition 1.0. to obtain the continuity. |

1
#C

Proposition I1.2. The sequence wy is strictly ergodic and (R, , S, phwyy ) 1S mea-
sure theoretically isomorphic to (X x H,T,,;, t@mp). Moreover it is a continuous
M-sequence.

Proof. We use facts from 1.6. again. The strict ergodicity of wy follows, as in the
preceding proof, from the equation

#H, 1 1

frh by, ) = Z fr(g,be) = e (= ZH ﬁ)a h e H.
TI'H( ) h
The continuity is proved as for w. |

The system (S, S, ) is our candidate for the (r,r) pair, while the system
(Quys S, Ly ) 18 our candidate for the (m,r) pair.
ITI. Spectral multiplicity (ies) of T,,, T,,,,, Theorem (r,r).

We first apply Propositions I.1., I1.1.; I.7. and the description of candidates in
IL. to obtain, using > ;- k% < 00,

Proposition IIL.1. One has m(T,) > r.
Proof. As indicated above, only check that the v-trajectory of e; is of length ». W
Proposition III.2. One has m(T,,) > m.

Proof. Let Hy = ann Hy = {y € G : YHy = €|H,}- Then as in [KwJLe], using L.9.
and Proposition 1.3., we have

m(Tyy) = max{#(Ho N 1)},

where T runs along the set of U-trajectories in G. Asis easily computed, this max
is equal to m. |

To prove that m(T,,) = r, we shall use Proposition I.2..
Proposition IIL.3. One has m(T,) = r.
Proof. Recall that from the block constructions in II. and I.6., we have ¢ pt =
Byli+1] - B;li). For h = h161+ A hrer € G, let h(t) = hy+holyy1 +...+holy 1]
Then h(t) < 2nly |, hence h(t) / Ayy1 — 0. Moreover,

<p(ﬁ(t)"t) =bip1[p+h(t)] — bes1[p], * € D;:flﬂ
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for 0 < j' <nyand 0 < p < Ay1 — h(t) —2. We write p = qrly,, +il},, +w, where
0<qg<pty1, 0<i<r, 0 <w <, ;. Next we write w = wi+walyr1+. . . +weli, 4
where 0 < wj < li41,1 < 5 < 7. Assuming that foreach 1 < j <r, w; <li11—n—1,
we see from the block construction that for such p’s,

@O = (B g [w + B(E)] = Brprafw]) = v (h), x € DEFL .
For given h and ¢, the set of p’s satisfying the desired conditions from above has
cardinality A¢11 — 0(A¢41), hence we obtain, decomposing X along each T-tower

&1, that for any v € G,

r—1

tim [ (O @) dp(x) = 1S 6 ) (h).

t—o0
X i=0

Moreover, (h(t)n;) is a rigid time for T. For 4" € G, let A,» = %Z:;& (). If
v,7" € G do not belong to the same 9-trajectory, then A, L Ay (in L*(G,mg)).
Hence since A, # 0, there exists an h € G such that A,(h) # A,/(h). Then

taking the rigid time (h(t)n:), applying Proposition II.2., we obtain p, L p,. We
conclude with Proposition TII.1.. |

Proposition II1.4. One has m(T,, ) = m.

Proof. Using the same notations as in 1.9. and Propositions 11.2.; TI1.2., II1.3., we
deduce that if v,y € H, if p5 L ps then py Ly as in [KwJLe]. Hence we may
deduce the equality

m(TWH) = max{#(Ho N T)},

where T runs along the set of d-trajectories in G. |

Next it is easy to compute that the set of lengths of o-trajectories in G is {d : d|r}.
Hence with 1.7. and Proposition III.3., we conclude that the essential range of the
multiplicity function of T, equals {d : d|r}.

And we see that if for 1 < s < m, T, denotes the 0-trajectory of the character
dual to ey +. ..+ e, then #(HoNY,) = s. Therefore, with Propositions I11.3. and
II1.4., we have obtained:

Proposition IIL.5. The system (X x G, Ty, p®mg) satisfies m(T,) = r, and the
essential range of its multiplicity function is {d : d|r}.

For 2 <'m < r, the system (X x H,T,, ,u® mp) satisfies m(T,,,) = m, and
the essential range of its multiplicity function is {1,... ,m}.

Now we pass to proving that r(T,) = r. Since r7(T,) > m(T,) = r, we only
prove that r(T,) < r. Let us define

Ei:=FE ;=B_1xXpB; 1<i<r

We shall show that lim;— ts(F1,... , E.,w) =1 for any § > 0.
For 0 < u < 1", we have

(5) (a) u:ul—l—‘ugl—l—...—l—ur.lr_ﬂOgui<l,1§i§r7
(b)  Bi[u] = v (Bi[u]) = v (urer + ..+ upe), 1<i <
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Let
Uz{u:ul—i-qu—l—...—i—url’"_l:Ogui<l, 2<i<r 0<wu; <l—n}.

Then #U = 1""1(l —n). For u €U, and g = (g1,... ,g-) € G, for fixed t > 0, we
have
Bi(9)u] = (ur + g1, sur + gr) = Balu+u(g)),

where u(g) = g1 + g2l + ...+ g-I""1, and u(g) < 2nl"~!. Hence Tﬁ(f\) < 2% and

d(Be1(9)[0, 17 — u(g) — 1], Beafulg), Iy —1]) < — —; 0.

In a similar way we obtain, using 8; = v*~!(831), 1 <i < r, and (1b), (5b), that the
above inequality is valid for B;;, 1 <3 <.

Since wy = by xby11 X. .. is a concatenation of the blocks 3, ;(g), g € G,1 <1i <,
using 1.2., I.4., and (1c), we see that for given ¢ > 0,

2
(B 1<i<rhw) 21— = L,
t

if Ql—" < §, because as is obvious from I.4., if 0 < §' < ¢, then ts({E; 1 1 < i <

rhw) > ts({E; : 1 < i < r},w). Hence we obtain, using I.4. and Proposition
IIL.5.:

Theorem (r,7). The system (X x G, T,, p®@me) satisfies r(T,) = r = m(T,), and
the essential range of its multiplicity function is {d : d|r}. It is measure theoretically
isomorphic to a strictly ergodic continuous Morse automorphism.

IV. The rank of T, : Theorem (m,r).

Using Theorem (r,r) and the natural factor Py, it is obvious that r(T,,, ) < r.
So from now on, we make some computations to show that F*(w) < T—il, because
F*(Ty,, ) -r(T,,) > 1. We first of all proceed by introducing new blocks (over the
alphabet H), more convenient than those having the subscript “H”.

Recall that

wH:boH XblH X oo,
th :ﬁf:[,
ﬂtH :ﬂt,lH-~-ﬂt,7'H7

ﬂtviH = FtviH X ... X Ft,rH X Ftle X ... X Ft,i—lH-

Identifying H with Z)" = é1Zy, + ...+ énZy, where éy,...,é,, are the natural
generators of Z we get mp(e;) = &; for 1 <i < m and mg(e;) =0 for m+1 <
i < 7. Then

Fri,=F,=0...... 0ifm+1<i<r
1, times

So from now on, we shall write eq,... ,en, F; = Fi;, Bi = B, b, w instead of
€1, €m, Ftiy, Bty biy, and wy respectively.
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Therefore we shall make the forthcoming computations with the following new
blocks (over H):

Ft(]:FO:FtZ‘:Fi:O ...... Olfm-f—].SZST,
s s N ;

1 times

and
r—m

—~
01 =F1 x...xF,, x Fy x...x Fy,

rTr—m

—~
Bo=Fy x...x F,, Xx Fog x ... x FyxFy,

r—m

—_—~
Bm = Fp X Fo X ... X Fg xFy X ...x F,,_1,

r—m

—~
Bm+1 = Fo X ... X Fg xF} X ... X Fp,

r—m—1

—~
Or=FyxFy x...xF, xFy x...x Fy.

Then = 061...0, by = P, w =bg X by X ... and wy = by X b1 X .... Notice
that for t > 0, w = By X wi41.

In the sequel we shall need the formulas for the values §;[u], 0 < w < I". It
follows from the definition of the F’s and f’s that ((5a))

(6) Bilu] = uﬁi)el + .. +ule,,,

where

(7) { (UY)’ 7u"(77::7f)):(u7‘—i+23"' y Up, Uy - v e aum—i—i-l) lfISZva
(ugl), . 7u§f1)) = (Up—ig2yevn yene sUppmeit1) Em+1 <3<

IV.1. Auxiliary Lemmas.
In this section we give some estimations of the d-distance between blocks occur-
ring in w or w;. We assume that

(8) Iy > max{16, %}, for every t > 0.
m

(9) 0<s <rl"=1, s ="+, with0<i¢ <r—1,0<u <" -1,

and denote
Ig,h = ﬁ(g)ﬁ(h)[s/asl +7’lr - 1]7 gvh € H.
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Lemma IV.1. If1 <4 <r —2 then for every a,g,h € H,

d(ﬁ(a)’ Ig,h) > 67

Proof. Using (3) we get

(10) d(B(a), Iy ) > zd(B(a), Iy,p)-

Take 0 < s < rl" — 1 and represent it as s = " +u with 0 < ¢ < r —1 and
0<wu<!"—1. Then

(11) B(a)s) = Bia)[u] if u >0,
and
(12) Bla)s] =e=—(e1 + ...+ em) if u=0.

Nextlet S={0<s<7rl"—1:0<wu; <1—2, where u is of the form (5a)}, and

Il = ej...e1eex...e0€e...€€pm...6pe0...0e...e0...0,
Ir—1 Ir—1
Ir—1 Ir—1 Ir—1 T— r—

IIT = Ilell[s,s +ri" —2], (II]=ri"—1).

It follows from (6) and (7) that whenever u; <1 —1,

(13) Gilu) = e; if 1 <i<m,
Bilu] =0 form+1<i<r.

Using (11), (12) and (13) we obtain G(a)[s] = I1[s] if s € S. At the same time we

have Tff—fl >1- %, which implies
- 2
(14) a(3(a), 11) < -
t
Similarly we establish that
- 2
(15) d(Iyn, III) < T
t
It is easy to remark that
(16) J(II,III)E% (because 1 < i <7 —2).

Now, using (1g), (14 —16) we get .
< d(I1IIT) < d(I1, B(a)) + d(B(a), Ln) + d(Ign, ITT) < 7+ d(B(a), Iy,p)-

4
(F=1)> & [ |
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Lemma IV.2. Assume that

7 ’ ’or r_ o i i
(17) d(B(a"),Ig p]s',s" +rl" —1]) < 0, where 0 < § < mm{ﬁr’ o 16}’

and s' is as in (9), a/,¢',h € G, v = v} +uhl + ...+ uli""t. Then either i’ =0
ori =r—1, and

(18) uy=...=u.=p modn for some p € Z,.
Additionally,
(19) d(B(a), Lyals', s +r1" = 1)) 2 T,
for any a,g,h € G, where v = 71‘—/ ifi' =0andv =1— 71‘—/ if i’ = r—1. Furthermore,
Case 1°: if i’ = 0 then

1
(20) ad—g =ple1+...+en) and v’ <4ZT(5—|—7).
Ifg—a# ¢ —a then
(21) d(B(a), I uls',s' +rl" — 1)) > (1—v) + 8ﬁy.

T

Case 2°: ifi' =r—1thend — W =ple1+ ...+ en) and v’ > 1"(1—46 — }). If
h—a# h' — a then (21) holds.

Proof. The inequality 6 < g*, (17) and Lemma IV.1. imply i = 0 or ¢/ = r — 1.
Assume that ¢/ = 0. Using (10), (14), (15) (with @', ¢’, ') we have

(22) d(B(a"), Iy pls', s +rl" —1]) >

(d(II,111) — ?).

W =

I
$(*7 — 1) which in turn implies that u’ < 41"(§+ 7). This proves the second part
of (20).

To prove the remaining part of the Lemma let us remark that the last inequality

implies v/ < 31" because § < 1 and % < % ((8)). Then using (1f) we get

It is easy to see that i’ = 0 implies d(II,III) > “=L. Thus (22) gives § >
1
T

J(ﬂl(a/)[oa I"— ’U,/ - ]-]afgi(g/)[u/a " — 1])

r -
! (B(a'), Iy ps', s +rl" —1]) < 2rd <1,

<
I Ay
for every 1 < i < r. Thus there exists at least one u, 0 < u <" —u' —1 (depending
on 1) such that G;[u] +a’ = B;[u+u']+¢’. This equality and (6) (for u and u') give
(23) u’l(i)el +...+ u;n(i)em =d—g.

Then using (7) we obtain (18), which with (23) implies that ag—go = p(e1+. . .+em).
This completes the proof of (20).
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Now we will prove (19) and (21). Using the same arguments as before we get

that the equality G;[u] + a = B;[u + ] for every 0 < u <" — ' — 1 is equivalent
to the condition uﬁ(z)q +...Fu, e em = a — g. This equivalence and (23) then
imply

- vy JO0ifg—a=g —d,
(24) d(I11;,1V;) = {”fg_a#g,_a,’

where I11; = $;(a)[0,I" — ' — 1], IV; = B;(g)[v/, 1" — 1], 1 < i < r. Next, we need
the following evident property;

(25) for arbitrary subblocks Ay < (i(g’), A2 < Bir(h), ' #14, 1 <i <m,
1<¢ <r, W, ¢ € H, such that |A;| = |Az| > 4, we have d(A;, Ay) > é.

Let us examine the number v’. If p > 0 ((18)) then v/ > [""! > 4. If p = 0 and
u’ > 0 then n|u) for 1 <i <r and again v’ > n > 4. Denoting

Vi=Bi(a)[l" =o', 1" = 1], VI; = Bi11(9)[0,u" — 1], 1 <i <m,

we have

Vil = |VL| =u' > 4.
It follows from (25) that

(26) d(Vi, VL) > < for 1 <i <m.

1
8
Using (1d), (1le) and (26) we get
d(B(a), Igpls’, s +rl" —1]) >
L= ) S, dUTLLIV) + 3 0 (Vi VE)| > 24

If in addition g — a # ¢’ — a’ then (24) and (26) imply (21). This proves Case
1°. The proof of Case 2° is similar. |
Lemma IV.3. Let s) = ¢'ri"+¢I"+u,1=10;,0<q¢ <p,—1,0<¢ <r—1,
0<u <I"—1, and let

(27) Ty = bi(g)be ()]s}, 8, + perl” — 1].

Assume that d(bi(a’), I, h/) < 6, where 0 < 0 < ;)mm{m7 7,75} Then ul =
..=ul. =p mod n for somep € Z, and eitheri’ =0 ori' =r—1. If s] < ptrlr
then o’ —g' = hy; and if s} > %ptrl’" then o’ —h' = h,,, where hy, = p(e1 +.. .—l—em).
Moreover, putting v = ;‘—T, ifi =0 and v = 1—% ifi =r—1,( = g—; if
sh < %ptrlr and ( =1— z—; if 8§ > %ptrl’”, we have:
Case 1°: if i’ =0 then v’ <1"(40 + }) and

(28) 1(be(a), I ) > gtv fora,g,h € H,

(29) (be(a), I )2%I/—G—(l—u)(l—{)z'fg—a;éhpandh—azhp,
(30) 7(bt(a),Ig7h) >gv+ (1 —-v)(if g—a=hy,and h—a # hy,
(31) (i(bt(a)7lg7h) >gv+(l—-v)if g—a#hy,and h—a# hy.
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Case 2°: if i’ =7 — 1 then v/ > ["(1 — 46 — }) and (28 — 31) hold.
Proof. Using (1d) and (le) we obtain

/—\_/

d(by(a'), Iy ) = (1— qil) 1(B(a), Iy g[8, 8" + 71" —1])
(32) + % ( ( ) Ih/h/[s S +’I"lr71D
+ Ld(B(a), Iy s, s +rlm = 1)),
where s’ = ¢/I" 4+ u/. Assume that s{ < p,;rl". Then 1 — —i>1 5 and using (27),

(32), we obtain the inequality d(8(a’), I, o[s',s" + 71" — 1]) < 3(5 Then Lemma
IV.1. implies i’ = 0 or ¢/ = r — 1. Now, we apply Lemma IV.2. with d’,¢’ and
h’—g Wethenhaveulz .=u.=p modnand a — ¢ =h, Ifi =0 then
u' <1"(46+ 7). Further (19) and (32) imply (28). Similarly (29), (30) and (31) are
consequences of (19), (21) and (32).

Ifoy =r—1thenu >1"(1—-46— %) and the proof of the remaining part of the
Lemma is the same. |

Lemma IV.4. Let C,D be blocks over H such that |C| = |D|+ 1, |D| =k > 1.
Let0< s <prl"—1,1=1; and

I=bxD, II=(bxC)[s, s +kprl" —1]).

Assume that d(I,1I) < &, where 0 < § < smin{, o=, }. Then there exists
p € Z, such that

d(D(h,),C[0,k —1]) < 6,
(33) or
d(D(hy), C[1, k]) <9,

where

(34) hy =pler + ... +em).

Proof. We let I; = by(D[j]), 11; = b:(C[j])be(C[j + 1])[s', 8" + perl” — 1], for 0 <
j <k —1. Then applying (1d) we deduce that

W‘
H

(35) d(I,1I) = df(I‘, II;) < 4,

Ell
Il
o

J

so there exists a 0 < jo < k — 1 such that d(I;,,11;,) < 6. Let us suppose that
s’ < ipyrl”. Then Lemma IV.3. implies that D[jo] — C[jo] = hy, for some p € Z,.

Let
{Zo={0§jSk—lzD[j]—C[j]séhp},
21 ={0<j<k—1:D[j] - C[j+1]#hp}.

Then using (35), defining for shortness d; := d(I;,11;), 0 < j < k — 1, we obtain

(36) & >d(I,1I) =

> d Z+Zd+2d

JEZ0NZ, €20\ J€Z1\ 20 JjEZ0UZ,

El e
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Using (28 — 31) we get

(I II))Z V—‘r(l—V)iijZ()ﬂZl,
d(I;, H))ZSry—s—(l—u)(ifjezl\zo,
(1 H))z§u+(1—u)(1—g)ifjezo\21,

So (36) and the precedlng four inequalities imply

{5 > Bu4 22 (1= Q#2004+ (#21)

(37) S (g _ min{#zko,#zl}) | min{#Z0#Z)

It follows from the above calculations that § > 1*T”min{#Zo,#2,"1}50 since
0 < {g=, We obtain g — w > 0.

Thus with (37) we deduce that % < ¢. Finally let us observe that
mind# 20 #21} — min{d(D(hy), C[0, k — 1]),d(D(hy,), C[1,k])}, from which (33) fol-
lows. |
Corollary IV.1. Under the assumptions of Lemma IV.4., if additionally we as-
sume that 40k < 1, then D(h,) = C[0,k — 1] if ( < & and D(h,) = C[1,k] if
(> 1
Proof. 1f follows from the definition of v (Lemma IV.2.) that 1—v > 1 if 45—|— <1
(use also (8)). Then (37) implies § > £20 if ( < 1 and § > 2 1f< > 1 Thus
either #2Zy =0 or #2, = 0. |
Lemma IV.5. Let C, D be blocks over H such that k = |D[ > 1 and |C| = [D[+1.
Let0<35<n;—1and I =By x D, II = (B x C)[§ §+ kn, — 1]). Suppose that

1 1 1y
16r’ 217 16

(38) d(I,IT) < 6 where 0 < 6 < = !

3 mln{

Then there exists p € Z,, such that

J(D(h’p)v C[Ov k — 1]) < 57
(39) or

d(D(hy), C[1, k]) <6,
where hy, is defined by (34).

Proof. We use an induction argument on ¢. For ¢ = 0 the Lemma follows from
Lemma IV.4.. So let us suppose that (39) is true for ¢ — 1 and assume that (38)
holds for t.

We have By xC = B;_1 x(by xC), ByxD = B;_1 x(by x D), and § = §1n4—1+ 5o,
where 0 < 51 <X\ —1,and 0 < 8§y <my_1 — 1.

So let D1 = b; x D and C; = by x C[81,81 + At(k + 1) — 1]. Then (38) can be
rewritten as d(By_1 X Dy, (By_1 x C1)[32, 32 + kny — 1]) < 6. Using the induction
hypothesis we obtain

(40) (D1 (hy, ), C1[0, kAs — 1]) < 6,
(()il) J(Dl(hpl)a Ol [17 kAt]) < 67

for some p; € Z,. Let us suppose for instance that (40) is holding. Then it can
be rewritten as d((b; x D)(hy, ), (b x C)[31, 51 + kA; — 1]) < §. Then Lemma IV 4.
implies that either d(D((hy,))(hp,), C[0,k—1]) < 6 or d((D(hy,))(hp,), C[1,k]) < §
for some po € Z,,. Letting p = p1 + pa, these two last eventualities read as (39). W
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IV.2. Special subsequences and subblocks of w.

To estimate the numbers t5(A,w) for the blocks A appearing in w we distinguish
special subsequences of w and then we examine the possible appearances of all long
enough blocks in those subsequences.

Every fragment I := w[jny, (j + 1)ny — 1], j > 0, is of the form By (h) for some
h € H. So by a t-symbol of w we mean a fragment of w like I;, that corresponds to
a block By(h).

Given a fragment A = w[g,q + s — 1] of w we define

A% =w[qg—6s,q+ s+ 05— 1],

where 0 < 6 < %

Gathering the t-symbols By(h) from their natural positions (like for I;) we can
define disjoint subsequences w;(h) of w, h € H. Precisely, let N, = {j > 0: [; =
By(h)} and put wi(h) = Ujen, I;. In the same way we define

(41a) wf(h) = UjeNhI]‘-S.

Other natural subblocks of w that we need to distinguish are the blocks
Eyi(h) = By X Bi41,i(h), 1 <i<r, he H.

Then every fragment I1; = wljngdy, ,,(j + 1)nljy — 1], j > 0, is equal to some
E.;(h), for some 1 < i <r, h € H. Then we define additional subsequences of w
as follows:

(41Db) wit1,i(R) = Ujen, 115,
wii14(h) = Ujen, iy 113

The blocks

1"~ times
——— .
Lijg:i= Gg...... g,l=lLy,i=m+1,...,r, g€ H,

also appear naturally in w;y1. Any block 8¢11,(h) is a concatenation of the blocks
Ly ; 4, where g runs over H; moreover,

1
fr(Lis g, Bev1,:(h)) = e gheH, m+1<i<r

Define M ;4 = By X Ly 9, m+1<i <7, ge& H. The blocks M;; , appear in
w at the positions jngd" + sl" " I =111, j € Ny(h), 0<s <" heH. Let
us denote and define the following:
IIT s =111} j s = wlingd” + sl"~F jngd"™ + (s + )17~ — 1],
J € UnenNi(h), 0 < s <171,

Nig  ={0,8):7j € UnenNi(h), 0 <s <™, I1I; s = My},
(41C) Wtli,g — U(j,s)ENi,gIIijs’
w?Jrl,i,g = U(j»S)ENi,yIIIJ({S'
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The subsequences defined above ((41a — ¢)) enjoy the following properties (for
fixed t > 0):

(42) wi(h) are pairwise disjoint when h runs over H, Upecgwi(h) = w,
and D(wy(h),w) = -4, h € H,

(43) {Wt_l,_l,i(h/) are pairwise disjoint when h runs over H and 1 <7 <,
Unerr Ui_y wip1,i(h) = w, and D(wig1,i(h),w) = =,

Wit1,i,9 are pairwise disjoint when g runs over H and m +1 <i <,
(44) = (), and D(wes1.g,w) =
Uge HWit1,i,g = UnerwWit1,i(h), an (Wegt,ig,w) = =y

Until the end of the paper, we shall assume that § and t satisfy
(45) ong >4 and bl > 4.

Now, we classify the subblocks A < w such that |A| > 3ng. For every such block
there exists a unique ¢ > 0 such that

(46) A= El(Bt X C)EQ,

where |C| > 1, C' < bi41(9')be+1(h') for some ¢', ' € H such that (¢')(h') < wiyo,
E; (resp. Es) is a right-hand side (resp. a left-hand side) of a ¢-symbol.
Given ¢ > 0 and ¢ > 0 satisfying (45), we define three subsequences @y, s, w3 of

w by

Wi = w1 = Ujzow|[(J = 0)na, (5 4 6)ne],

W2 = Wa = Ujsowl[(j — 0)Ify 1, (7 + )i 4],

@r3 = w3 = Ujzow[(J — )leq1, (5 + 6)le41].
Notice that D(®1 U &y U @3,w) < 66, where &1 U @y U @3 denotes the obvious
subsequence of w. We shall examine blocks (46) satisfying the additional condition

(47) AN (w\ (@1 Uwe Uds)) # 0.

We now distinguish six classes Ky, ... ,Kg for blocks of the form (46) that are
such that any A satisfying (47) belongs to at least one of these classes:

(A) A €K, iff |O] <3,
(B) A€k iff |C|>4and C < B3], (W) where b € H and 1 <i<m,

Ae Kg iff C < ﬂ(g/)ﬁ(g/), ﬂ = ﬁt-{-h 30102 < C,

(©) S >0, =12, &y < Bilg),
Cy < Biv1(d), 1<i<m, ori=randr+1:=1, ¢ € H,
(D) AcKyiff C < B(9")B(g"), B:=Bty1, C < Lf,i/,gfL?,yyhu
IC| >4, m+1<d <r g heH g#NW,

A€ Ks iff C < B(g)B(g), B:= Biy1, for some g€ H,

(E) and there are at least three blocks Ly ; g/, Lt ipry Lt g
such that fr(Ly,.q,C) >0, fr(Liin,C) >0, fr(Lis,C) >4,
where ¢', ', f' are pairwise distinct,

(F) A€ K¢ iff Biy1(¢") < C for some g’ € H.
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IV.3. Theorem (m,r).
Let 6p = min{Z, -, =}, 4 be as in (47) and I = wlq,q + |A| — 1. We shall
estimate t5 (A, w).

Lemma IV.6. Assume that d(A,I) < 6, 0 < < %50, ly >4 and A € Ky (¢f.

(A)). Then I < Upeg, wi(h), where Ha C H with #Ha < n. Hence ts(A,w) <
7

m—1 + 66.

nm 1

Proof. Let q1 = |E1| (g1 < ny), and k = |C|. Using (1f) we have 36 > 3d(A,I) >

d(B: x C,wlqg + q1,9 + @1 + kny — 1]). So applying Lemma IV.5. we get

(48) d(By x C,w[sny, (s + k)ny — 1]) < 396,
where |sny — ¢ — g1| < m. This implies

(49) |sny — q| < 2ny.

Next, (48) gives d(C,wiy1[s,s +k — 1]) < 36, and Corollary IV.1. (it holds that
4ké < 1) implies that either C(h,) = wit1[s,s+k—1] or C(hy) = wit1[s+1,s+ k]
for some p € Z,,. Putting p; = C[1] + h,, if |C] = 3 and C[0] + h,, if |C| < 2, we get
that either wyt1[s+ 1] =p1 (if k= 3) or wer1[s] =p1 (k& <2).

Assume that k = 3 for instance. The equality wi41[s + 1] = C[1] + h, means
that the fragment w[(s + 1)ny, (s + 2)n; — 1] < Upez, wi(C[1] + hy). Taking into
consideration two neighbouring ¢-symbols from the right and left sides, plus the
blocks E; and Es, we deduce that I < Upep,wi(h) where #H 4 < n.

In the case k < 2 we obtain the same conclusion. Using (42) and (47) we deduce
that t5(A4,w) < %—1—6(5: nTL—i—GJ. [ |

Lemma IV.7. Assume that d(A, 1) < %, 0 <8< §b, and A € Ky (see (B)).
(29)

Then I < Upenwyyy;(h). Hencets2 (A,w) < HT—‘M + 60.

’ T
Proof. The same arguments than those appearing in Lemma IV.6. lead to
d(C,wiis,s +k —1]) < 8 The conditions (47) and 6l;11 > 4 imply that C

2
contains a subblock C such that }g} > % and C < Bi41,:(R') for some h' € H.
Hence d(C,w(s1,s1 +|C| —1]) < 62, where s1,... ,s1 + |C| — 1 are the positions of
Cin C.

Writing C' and wls, s + k — 1] instead of C' and w[sy,s; + |C| — 1] respectively,
suppose that wy11[s, s+ k — 1] contains a subblock D; such that |D;| > 4, ‘Dkl‘ >0,
Dy < Upepwit14(h) and ¢ # ¢'. Denoting by Cha subblock of C' appearing at the
same positions as Dy in wyyq[s,s +k — 1] and using (1f) we get
82 > d(C,wisa[s,s + k — 1)) > Pld(cy, Dy) > éd(Cy, Dy),
what gives d(Cy,D;) < 8. However the property (25) says that d(Cy,D;) > %.
Hence either % < d or |Dy] < 3. In both cases this means that B; X wit1[s, s +
kE—1] < Uhewa+17i(h) because k < |f5;] and % < 6 (cf. (45)). Enclosing the
(wings) blocks E1, E; we obtain I < Upegwi?, ;(h) on the base of (49) and the
inequality n% < 9.

We conclude as in the above Lemma, using (47) and (43), to obtain t% (A,w)

<
140 4 66. |
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Lemma IV.8. Let d(A,I) < 0 <8 < §8o, and assume A € K3 (see (C)).

36 J
Then either
50 I < Upen w®)(p, Hy <n, thent s (Aw 14'4‘5—1—6(5
AFt42
3671
or
(51) I< UhEHWt(ii),i/(h)a i'=diori=i+1, thent s (Aw) < HTM + 69,

where i is defined in (C). *
Proof. As before we have d(C,wiy1[s, s+k—1]) < %. Let D; and Dy be subblocks

of wii1[s,s + k — 1] occupying the same positions in it as C; and C5 do in C,
IC5] _ 1C5] 18i]

respectively. Then we have |c]\ = BT > 29 5. Hence
52 52
(52) (Cl,Dl) < E and d(CQ,DQ) < E

It follows from the proof of Lemma IV.7. that D; < UheHwt(i‘Sl)7i(h) and Dy <
Uhe Hwt(ii),i 4+1(h) (these last inclusions are also valid for ¢ = m and ¢ = 7). From the
above inclusions we deduce that DDy < ﬁtﬁ)z(gl)ﬁfﬂ i+1(g1) for some g1 € H.
If in addition Dy < 6&?71-(91) (or Dy < ﬂt(ﬂ i+1(g1)) then (51) holds. If not then

(53) DiDz < B (90841 (91)
Further, (lc,e) and (52) imply d(b; x C1C%,b; x D1Dg) < %. Applying Lemma
IV.4. we deduce
(54) d((C1C)(hp), (D1Ds)[0,[C1Co| = 1]) < &, or
— 2

(55) d((C1Ca)(hy), (D1Ds)[1,|C1Cal]) < %, for some p € Zy.

Suppose that (54) holds. Then we can write C; = E(go), C2 = E'(g0), D1 =
E(g1), Dy = E'(g1), where E is a subblock of the right side of 8; and E’ comes

from the left side of 3;11. Thus (54) has a form d((EE’)(go +hyp), (EE")(g1)) < %.
Hence we must have g1 — go = h,. Putting Ha = {go + hp : p € Z,,}, we deduce
from (53) that (50) is satisfied. In the same way we deduce (50) from (55). If (50)
holds then using (42) and (47) we have t%(A,w) < L84 4 66. Else for (51) we

use (43) instead of (42) and deduce ¢ ;3 (4, w) < 222 4 6. |
367
Lemma IV.9. Let d(A, 1) < §, 0<8 < §d, and A € Ky (see (D)). Then
(56) I<U_ m+1w8j2fg for some g’ € H. Hence ts (A,w) < 340 4 65
Proof. The assumptions of the Lemma imply
- ]
(57) d(Ciweg1]s, s+ k—1]) < 7

First assume that C' < L ;, . Then (57) implies directly that wiyq1[s,s +k—1] <

Wi41,i0,9' for some m + 1 < ip < r. Using the same arguments as in the preceding

iy
Now assume that C' < L, L7, .. The conditions (47) and the inequality
0li+1 > 4 imply that C contains a subblock Cy such that ‘\C|l 2 sand Cy < Ly g,
where ¢’ = ¢’ or h’/. Repeating the above arguments we obtam I =B xCy) <
Ui_ m+1wt(ié1)zg This implies (56). Then (47) and (44) imply that tg(A,w) <
|

S 1 60.

nm

Lemmas we get I < Uj_,, jw
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Lemma IV.10. Let d(A, 1) < %, 0< 6 < §0, A€Ks (see (E)). Then
(58) I< UhGHAw§+62( h), #H < n. Hence ts2 (A, w) < 148 4 66,

> pm—1

Proof. As before we obtain

(59) d(C,wi1[s,s +k—1]) < &

Let us assume that C' contains exactly three kinds of subblocks Ly ; ¢, Lt s ny Lt 7,
each appearing in its natural positions. Let Cy,Cs, Cs be the families of all subblocks
Liig L, Lys g of C appearing at their natural positions. Each of Cy,Ca,C3 is
a union of disjoint subblocks of C.

We pick subblocks Dy, Da, D3 from wyi1[s,s + k — 1] occupying in it the same
positions as the blocks C, Cs, C5 from the families C1,Cs,Cs do in C, respectively.
They define the families D1, Dy, D3. For each C; € C;, we let D;(C;) denote the
block of D; appearing in the same positions as C, for j = 1,2,3. Then we define

d(C;, D)) i= o > d(C; Di(C).
=

#

Then (59) implies d(Cj, D;) < é 1 < j < 3. It is not hard to deduce that I <
wﬁ‘? (h) for some h € H. Let g be another element of H such that I < wizé) (9)-
Then using Lemma IV.4. and repeating the arguments of the proof of Lemma IV.8.
we obtain ¢ — h = h, for some p € Z,. This implies (58). The same arguments

apply to the case where C' contains more than three blocks of the form L, ; ¢.

Then using (42) and (47) we deduce that tﬁ(A, w) < LES 4 66, [ |
Lemma IV.11. Let d(A,I) < 187 0<d < gbo, and A € K¢ (see (F)). Then
(60) I< UheHAwﬁ‘;H (h), #H4 < n. Hence ts (A,w) < 2;’;4‘5 + 64.

18

Proof. Using the same arguments as in the (numerous) preceding Lemmas we prove

that C contains a subblock C; such that “Clll > 1 5, and C; contains at least one

block ﬁt-‘rl( ), and Cl < bt+1( ) (OI‘ Cl < bt—‘,—l(h/))- Then

(61) d(Cy,Dy) < @

where D; is defined in the same way as the one in the proof of Lemmas IV.8.,
IV.10.. Then (61) implies that

(62) Dy < biy1(g) for some g € H.

Then we use Lemma IV.4. to deduce that g — ¢’ = h,, for some p € Z,,. This, with

(62), implies (60). Then (47) and (42) imply ¢, (4,w) < 244 + 66. [
18

Theorem (m,r). The system (X x H,T,, . pn ® mpg) is such that r(T,,) = r,
m(T,,, ) = m, and the essential range of its multiplicity function is {1,... ,m}. It
is measure theoretically isomorphic to a strictly ergodic continuous Morse automor-
phism.

Proof. Let 0 < 69 < %(50 and let §; = %. Then select tg such that dang, > 4,
daliy+1 > 4. Let A < w be a block such that |A| > 3ns,. Then A has a form (46)
with ¢ > t9. With Lemmas IV.6.-IV.11. we deduce that, using the fact that for
0<d <9, ts(Aw) > ts (A w),

7 1+4(52 3+465 1+ 46, 5+452

m—1" ’

}+652 =a.

ts, (A, w) Smax{n " o 1 pm
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Hence F*(T,,,) < a. We can select n and &, in order to ensure that a < —15. Then
using I.4. we deduce that r(7T,, ) > r. |

Remark IV.1. A “Chacon type” modification of the candidate to the (m,r) pair
(see I1., IV.) can lead to a weakly mizing system realizing the pair (m,r) (2 <m <
r < o0). Namely, we define the base system (X, T, u) as follows (it shall no longer
be an adic adding machine):

1): pick Ao, A1,... asin IL.;

2): define the generating partition of the continuous Lebesgue probability space
(X, p) inductively as to be a refining sequence (§)i>0 of T-towers

&= (D§,... ,Dp,—1), TD! =D ,, 0<i<mn—2,

where ng = Ao, p(D?) = nio 0 < i < ng), and if & is defined, then we let
ngr1 = Mp1ng + 1, and

At+1—2 E+1 t+1 — Nt ;
(Uj:0 D; )UD nt+i+1*Dia 0§Z<nt7

Jjni+i M1 —

and p(DiH) = ﬁ“; 0<u<ng.
3): define the sequence of blocks (b)i>o exactly as in IL if m =r or IV. if m <r;
4): with the new sequence (ng)i>o from 2) above, define the blocks (By)i>o by

By = by and

Bii1 = By(bt+1[0]) - .. Be(be1([Ae1 — 2])0Be (bes1 [Aeg1 — 1]);

5): let the M-cocycle ¢ : X — H (H = G if m = r) be defined by Ppt =

Then (n¢)e>o0 is a rigid time for T', and following the argumentation from [KwJLe,
Sec. 4], (X x H, Ty, 1t @ mp) is seen to be weakly mizing with the desired spectral
multiplicity equal to m. As is seen along the lines of [Kw] or [Le], the system has
a strictly ergodic shift representation (S, S, pi,) where w € HY is defined by

w[O,nt — 1] = Bt, t> 0.

The computation of its rank uses this symbolic representation and may be done in
a closely similar way to what was done in I11. and IV ..
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