FINITE RANK TRANSFORMATION AND WEAK CLOSURE THEOREM: II.

Jan Kwiatkowski *(Torún) and Yves ${\rm Lacroix}^{\dagger}({\rm Brest})$

June 21, 2005

Abstract

Given positive integers (or ∞) $r \geq 2$ and $m \geq 1$, we construct an ergodic automorphism T with rank r and $\#_{\overline{wcl\{T^n; n \in \mathbb{Z}\}}}^{C(T)} = m$. Moreover, $wcl\{T^n; n \in \mathbb{Z}\}$ is uncountable.

Contents

1	Introduction.	2
2	Preliminaries.	2
	2.1 Notations and definitions.	. 2
	2.2 Sequences and blocks.	. 3
	2.3 Adding machines and <i>r</i> -Toeplitz cocycles	. 5
3	Examples of <i>r</i> -Toeplitz extensions.	7
	3.1 The case $r \ge 2$, $m \ge 2$. 7
	3.2 The case $r \ge 2$, $m = 1$. 8
	3.3 Ergodicity and the metric centralizer.	. 8
	3.4 The centralizer of T_{α} .	. 9
	3.5 <i>d</i> -bar distance between blocks.	. 12
	3.6 <i>d</i> -bar distance between blocks - the case 3.2	. 18
	3.7 The centralizer of T_{φ} (continuation).	. 20
4	Rank of T_{φ} is r.	21
	4.1 The frequencies of <i>t</i> -symbols and an estimation of the rank	. 21
	4.2 Special subblocks of ω_t .	. 22
	4.3 $r(T_{\omega}) = r$: the case 3.2.	. 23
	4.4 $r(T_{\varphi}) = r$: the case 3.1.	. 28
5	Pairs (r, ∞) or (∞, m) .	29
	5.1 The case (r, ∞) .	. 29
	5.2 The case (∞, m)	. 30
	*Wydział Matematyki i Informatyki. U. M. K., ul. Chopina 12/18, 87-100 Toruń - Poland.	

[†]U.B.O., Dép^t de Maths, 6 Av. V. Le Gorgeu, B.P. 809, 29285 Brest Cedex France. E-mail: lacroix@univ-brest.fr

¹Keywords: Rank, Metric centralizer, Weak closure Theorem.

²Classifications: 28D,47A.

1 Introduction.

Let (X, \mathcal{B}, μ, T) be an ergodic dynamical system and let C(T) be the metric centralizer of T. The Weak Closure Theorem [Kin1] asserts that $C(T) = wcl\{T^n, n \in \mathbb{Z}\}$, whenever r(T) = 1, where r(T) is the rank of T. The natural question of the existence of a relationship between r(T) and the cardinality q(T) of the quoutient group $\frac{C(T)}{wcl\{T^n; n \in \mathbb{Z}\}}$ in the general case arises.

In [BuKwSi] a class \mathcal{A} of group extensions of rank one transformations is defined such that $q(T) \geq r(T)$ for $T \in \mathcal{A}$. Moreover, the difference q(T) - r(T) takes arbitrarily large positive values and an uncountable $wcl\{T^n, n \in Z\}$ can be obtained. The reverse inequality $q(T) \leq r(T)$ holds for $T \in \mathcal{M}$ (the mixing automorphisms, [Kin2]) and for $T \in \mathcal{B}$, where \mathcal{B} is the class of automorphisms defined in [ChKaMFRa]. More precisely, if $T \in \mathcal{B}$ then q(T) = 2 and r(T) can be arbitrarily large [BuKwSi]. Each automorphism $T \in \mathcal{B}$ has a discrete part in its spectrum (from this point of view the classes \mathcal{M} and \mathcal{B} are far from each other). However for $T \in \mathcal{B}$ or $T \in \mathcal{M}$ the powers $\{T^n, n \in Z\}$ of T form an isolated set in C(T). Therefore in both cases one has $wcl\{T^n, n \in Z\} = \{T^n, n \in Z\}$. So it still remains interesting to find examples of automorphisms T such that $q(T) \leq r(T)$, r(T) - q(T) is arbitrarily large and $wcl\{T^n, n \in Z\}$ is uncountable.

In this paper we obtain stronger results. We construct a class of ergodic automorphisms T such that $wcl\{T^n, n \in Z\}$ is uncountable, and r(T) = r, q(T) = m for arbitrary $2 \leq r \leq \infty$ and $1 \leq m \leq \infty$, $(r, m) \neq (\infty, \infty)$. Our examples lie in the class of group extensions determined by r-Toeplitz sequences. The investigation of ergodicity and the metric centralizer relies on Newton's functional equation [New] and is carried out partially on a metric group extension representation of the system. Investigating the rank (and partly the centralizer too) we use a shift representation of those extensions.

2 Preliminaries.

2.1 Notations and definitions.

Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving invertible ergodic transformation of (X, \mathcal{B}, μ) . By the centralizer (metric) of T we mean the set of all measurepreserving automorphisms of (X, \mathcal{B}, μ) which commute with T and we denote it by C(T). Then C(T) is a topological group with the standard composition of the transformations and with a topology (called the weak topology) defined as follows: $\{S_n\}_{n \in \mathbb{N}} \in C(T)$ converges to $S \in C(T)$ if for every $A \in \mathcal{B}$

$$\mu(S_n A \triangle S A) \longrightarrow 0.$$

We shall indicate this convergence by $S_n \rightharpoonup S$.

With this topology, C(T) is metric, complete. By $wcl\{T^n, n \in \mathbb{Z}\}$ we mean the weak closure of the powers of T in C(T). We say that a sequence of sets $A_1, \ldots, A_k \in \mathcal{B}$ is a T-tower if these sets are pairwise disjoint and $TA_i = A_{i+1}, i = 1, \ldots, k-1$.

An ε -partition of X is a finite collection of measurable disjoint sets which covers X up to ε in measure. The rank of a dynamical system (X, \mathcal{B}, μ, T) is the smallest positive integer r = r(T) such that there exists a sequence (P_n) , each P_n an ε_n -partition, $\varepsilon_n \downarrow 0$, such that P_n (as a set) is a union of r T-towers. If such a positive integer does not exist then we say that $r(T) = \infty$.

Suppose now that G is a compact metric abelian group and $\varphi : X \longrightarrow G$ is a measurable function which we will call a cocycle. The G-extension of (X, \mathcal{B}, μ, T) given

by the cocycle φ is the dynamical system $\mathcal{X}_{\varphi} = (X \times G, \mathcal{B} \times \mathcal{B}_G, \mu \times \nu, T_{\varphi})$, where \mathcal{B}_G is the Borel σ -algebra in G, ν is the normalized Haar measure on G and

$$T_{\varphi}(x,g) = (Tx,g + \varphi(x))$$

for $x \in X, g \in G$. It is well known [Par] that for ergodic (X, \mathcal{B}, μ, T)

Theorem A T_{φ} is ergodic iff the functional equation

(1)
$$\frac{f(Tx)}{f(x)} = \gamma(\varphi(x))$$

has no measurable solutions $f: X \longrightarrow K$ for any nontrivial character γ of G (K is the unit complex circle).

It is known (see [New] for the definition) that if (X, \mathcal{B}, μ, T) is a canonical factor of T_{φ} (for example if T is with discrete spectrum) then, assuming that T_{φ} is ergodic, $C(T_{\varphi})$ is given by the triples (S, f, τ) , where $S \in C(T)$, $f: X \to G$ is measurable and τ is a group automorphism of G such that

(2)
$$f(Tx) - f(x) = \varphi(Sx) - \tau(\varphi(x)).$$

This means that every element $R \in C(T_{\varphi})$ is of a form

(3)
$$R(x,g) = (Sx,\tau(g) + f(x))$$

In such a case we write $R \sim (S, f, \tau)$. The following property is proved in [LeLi] and [LeLiTh], using Theorem A.

Theorem B If $R_n, R \in C(T_{\varphi})$ and $R_n \sim (S_n, f_n, id), R \sim (S, f, id)$ then $R_n \rightarrow R$ iff $S_n \rightarrow S$ and $f_n \longrightarrow f$ in measure μ .

Let $\sigma_a: X \times G \longrightarrow X \times G$ be given by the formula

(4)
$$\sigma_a(x,g) = (x,g+a), \quad a \in G.$$

Then $\sigma_a \in C(T_{\varphi}), \sigma_a \sim (id, a, id)$. For every integer $n, (T_{\varphi})^n$ is given by the formula

(5)
$$(T_{\varphi})^n(x,g) = (T^n x, g + \varphi^{(n)}(x))$$

where

(6)
$$\varphi^{(n)}(x) = \begin{cases} \varphi(x) + \ldots + \varphi(T^{n-1}x), & \text{if } n \ge 0\\ -\varphi(T^{-1}x) - \ldots - \varphi(T^nx), & \text{if } n < 0 \end{cases}$$

Then it follows from Theorem B that

Corollary 1 $(T_{\varphi})^{n_k} \rightharpoonup \sigma_a$ in $C(T_{\varphi})$ iff $T^{n_k} \rightharpoonup id$ in C(T) and $\varphi^{(n_k)} \longrightarrow a$ in measure.

2.2 Sequences and blocks.

A finite sequence $B = (B[0], \ldots, B[k-1]), B[i] \in G, 0 \leq i \leq k-1, k \geq 1$, is called a block over G. The number k is called the length of B and is denoted by |B|. If $C = (C[0], \ldots, C[n-1])$ is another block then the concatenation of B and C is the block

$$BC = (B[0], \dots, B[k-1], C[0], \dots, C[n-1]).$$

Inductively we define the concatenation of an arbitrary number of blocks. By $B_g, g \in G,$ we will denote the block

$$B_g = (B[0] + g, \dots, B[k-1] + g)$$

and by B[i, s] $(0 \le i \le s \le k - 1)$ the block

$$B[i,s] = (B[i],\ldots,B[s]).$$

Assume that

$$B = B(0) \dots B(r-1)$$

is a concatenation of r blocks $B(0), \ldots, B(r-1)$ having the same lengths and

$$C = C[0] \dots C[rm-1]$$

for some $m \geq 1$. We define the product $B \times C$ of B and C as follows:

$$B \times C =$$

 $B_{C[0]}(0)...B_{C[r-1]}(r-1)B_{C[r]}(0)...B_{C[2r-1]}(r-1)B_{C[r(m-1)]}(0)...B_{C[rm-1]}(r-1).$

Then

$$|B \times C| = \frac{|B||C|}{r} = |B(i)|rm$$
, for every $i = 0, \dots, r-1$.

Let Ω by the space of all *bi*-infinite sequences over *G*. If $\omega \in \Omega$ or ω is a onesided infinite sequence over *G* then $\omega[i, s]$, $i \leq s$, denotes the block $(\omega[i], \ldots, \omega[s])$. A block *B* is said to occur at place *i* in ω (resp. in a block *C*, |C| = n, if $|B| \leq n$) if $\omega[i, i + |B| - 1] = B$ (resp. C[i, i + |B| - 1] = B). The frequencies of *B* in *C* or ω are the numbers

$$fr(B,C) = |C|^{-1} \# \{ 0 \le i \le |C| - |B|; B \text{ occurs at place } i \text{ in } C \},$$
$$fr(B,\omega) = \lim_{s \to \infty} fr(B,\omega[0,s-1]),$$

if this limit exists.

For an infinite subsequence of ω , $E = \{\omega[n], n \in I \subset \mathbb{Z}\}$ (resp. $E = \{\omega[n], n \in I \subset \mathbb{N}\}$), we call the density of E the density of the set I in \mathbb{Z} (resp. in \mathbb{N}), whenever it exists. Let $\delta > 0$. We say that $B \delta$ -occurs at place i in C (resp. in ω) if

$$d(B, C[i, i + |B| - 1]) < \delta$$
 (resp. $d(B, \omega[i, i + |B| - 1]) < \delta$),

where

$$d((x_1, \dots, x_n), (y_1, \dots, y_n)) = n^{-1} \#\{i; x_i \neq y_i\}$$

(*d* is called the normalized Hamming distance or *d*-bar distance between sequences). We will say also that $B \delta$ -occurs on the fragment $\omega[i, i + |B| - 1]$ of ω .

We will use the following elementary properties of the distance d;

(8)
$$d(B \stackrel{r}{\times} C, B \stackrel{r}{\times} D) = d(C, D) \text{ (see (7))},$$

(9)
$$d(B_g, C_g) = d(B, C),$$

(10)
$$d(A_1A_2, B_1B_2) = \frac{|A_1|}{|A_1| + |A_2|} d(A_1, B_1) + \frac{|A_2|}{|A_1| + |A_2|} d(A_2, B_2),$$

where $|A_1| = |B_1|, |A_2| = |B_2|.$

If $D_1 \subset D$ (D_1 is a subblock of D) and $C_1 \subset C$, $|D_1| = |C_1|$, both appearing in the corresponding same positions, then

(11)
$$d(D,C) \ge \frac{|D_1|}{|D|} d(D_1,C_1).$$

(12)
$$d(A_1A_2...A_s, B_1B_2...B_s) = \frac{1}{s}\sum_{i=1}^s d(A_i, B_i)$$

if $|A_1| = |A_2| = \ldots = |A_s| = |B_1| = \ldots = |B_s|.$

By T_{σ} we denote the left shift homeomorphism of Ω . If $\omega \in \Omega$ then $O(\omega)$ denotes the T_{σ} -orbit of ω and Ω_{ω} the T_{σ} -orbit closure of ω in Ω . The T_{σ} -orbit closure Ω_{ω} is well-defined if ω is a one-sided sequence. Namely, we first let $\diamondsuit \notin G$ be an additional symbol. Then we let ω^{\diamondsuit} denote the bi-infinite sequence which agrees with ω at positive coordinates and has only squares appearing at the negative ones. Then we say that a *bi*-infinite y belongs to Ω_{ω} if there exists $n_i \to +\infty$ such that $T_{\sigma}^{n_i} \omega \to y$ in Ω (the convergence is for all coordinates of y, and the limiting element y does not contain any more squares). The topological flow $(\Omega_{\omega}, T_{\sigma})$ is called minimal if there is no non -trivial closed and T_{σ} -invariant subset of Ω_{ω} . We say that $(\Omega_{\omega}, T_{\sigma})$ is uniquely ergodic if there is a unique borelian normalized T_{σ} -invariant measure μ_{ω} on Ω_{ω} . Then $(\Omega_{\omega}, T_{\sigma})$ is said to be strictly ergodic if it is minimal and uniquely ergodic. Suppose $(\Omega_{\omega}, T_{\sigma})$ is strictly ergodic. The unique T_{σ} -invariant measure μ_{ω} is determined by the condition

$$\mu_{\omega}(B) = fr(B,\omega)$$

for each block B. In this case the definition of the rank can be expressed as follows.

We say that $(\Omega_{\omega}, T_{\sigma}, \mu_{\omega})$ is of rank at most r if for any $\delta > 0$ and every n, there exist r blocks B_1, \ldots, B_r , $|B_i| \ge n$, such that for all N large enough, for any $s \in \mathbb{N}$, the fragment $\omega[s, s + N - 1]$ has a form

$$\omega[s, s+N-1] = \varepsilon_1 W_1 \varepsilon_2 W_2 \dots \varepsilon_k W_k \varepsilon_{k+1},$$

where $|\varepsilon_1| + \ldots + |\varepsilon_k| + |\varepsilon_{k+1}| < \delta N$ and the distance d between W_j and some B_m , $j = 1, \ldots, k, 1 \le m \le r$, is less than δ . The system $(\Omega_{\omega}, T_{\sigma}, \mu_{\omega})$ is of rank r if it is of rank at most r and not of rank at most r - 1.

2.3 Adding machines and *r*-Toeplitz cocycles.

Now, let $T: (X, \mathcal{B}, \mu) \longrightarrow (X, \mathcal{B}, \mu)$ be a $\{p_t\}$ -adic adding machine i.e.

$$p_{t+1} = \lambda_{t+1} p_t, \quad \lambda_0 = p_0, \quad \lambda_t \ge 2 \text{ for } t \ge 0,$$
$$X = \{ x = \sum_{t=0}^{\infty} q_t p_{t-1}; \ 0 \le q_t \le \lambda_t - 1, \ p_{-1} = 1 \}$$

is the group of $\{p_t\}$ -adic integers and $Tx = x + \hat{1}$, where

$$1 = 1 + 0p_1 + 0p_2 + \dots$$

The space X has a standard sequence $\{\xi_t\}_{t\geq 0}$ of T-towers. Namely

$$\xi_t = (D_0^t, \dots, D_{p_t-1}^t)$$

where

$$D_0^t = \{x \in X; q_0 = \ldots = q_t = 0\}, D_s^t = T^s(D_0^t)$$

for $s = 1, ..., p_t - 1$. We have $X = \bigcup_{i=0}^{p_t-1} D_i^t$. Then ξ_{t+1} refines ξ_t and the sequence of partitions $\{\xi_t\}_{t\geq 0}$ converges to the point partition.

We will define a special class of cocycles $\varphi : X \longrightarrow G$ that are determined by Toeplitz sequences over G.

Let $r \ge 2$ be an integer, and assume that b^0, b^1, \ldots are finite blocks over G with $|b^t| = \lambda_t r, \ \lambda_t \ge 2$, such that $b^t[0, r-1] = (\underbrace{0, \ldots, 0}_{r-times})$. We shall introduce a particular

sequence (p_t) , and some new blocks (B^t) .

We can write

(13)
$$b^t = b^t(0) \dots b^t(r-1), \ |b^t(i)| = \lambda_t, \ i = 0, \dots, r-1.$$

Define another sequence of blocks $\{B^t\}$ letting

(14)
$$B^0 = b^0, \ B^{t+1} = B^t \stackrel{r}{\times} b^{t+1}, \ t \ge 0.$$

Then we have

$$|B^t| = rm_t = p_t; \ m_t = \lambda_0 \dots \lambda_t$$

and we can represent B^t as

(16)
$$B^t = B^t(0) \dots B^t(r-1), \ |B^t(i)| = m_t, \ i = 0, \dots, r-1.$$

Moreover

(

(17)
$$B^{t+1}[0, p_t - 1] = B^t$$

Now we can define a cocycle φ by

(18)
$$\varphi(x) = B^t[i+1] - B^t[i]$$

if $x \in D_i^t$ except of $i = m_t - 1, 2m_t - 1, \dots, p_t - 1$. Let us observe that φ is well defined. Such a cocycle is called *r*-Toeplitz cocycle. For every $t \ge 0$, φ is constant on the levels of ξ_t except of *r* levels.

The sequence $\{B^t\}_{t>0}$ determines a one-sided sequence ω as follows:

(19)
$$\omega[0, p_t - 1] = B^t, \ t = 0, 1, \dots$$

The condition (17) guarantees that ω is well defined. It is not hard to show that the condition

(20)
$$fr(g, b^t) \ge \rho > 0$$
 (if G is finite)

for every $g \in G$ and t = 0, 1, ..., implies that the system $(\Omega_{\omega}, T_{\sigma})$ is strictly ergodic. Then using (19), (20), and arguments as in [Lem], we deduce that the dynamical systems $(\Omega_{\omega}, T_{\sigma}, \mu_{\omega})$ and $(X \times G, T_{\varphi}, \mu \times \nu)$ are metrically isomorphic when T_{φ} is ergodic.

The group extensions defined by r-Toeplitz cocycles shall be called r-Toeplitz extensions.

In the sequel we will write

$$\omega = b^0 \stackrel{r}{\times} b^1 \stackrel{r}{\times} b^2 \stackrel{r}{\times} \dots .$$

~

Except of ω we need the sequences ω_t , $t \ge 0$, defined by

(21)
$$\omega_t = b^t \stackrel{'}{\times} b^{t+1} \stackrel{'}{\times} \dots$$

Examples of *r*-Toeplitz extensions. 3

In this part, given $r \ge 2$ and $m \ge 1$, we define r-Toeplitz group extensions having cardinality of the quotient group $C(T_{\varphi})/wcl\{T_{\varphi}^{n}; n \in \mathbb{Z}\}$ equal to m.

3.1The case $r \ge 2$, $m \ge 2$.

Let $G = \mathbb{Z}/m\mathbb{Z} = \{0, ..., m-1\}$. Define

$$F^{(i)} = \underbrace{\overbrace{00\dots0}^{r(2^{i+2}-1)}}_{H^{(i)}} \underbrace{\overbrace{0\dots0}^{r}}_{i+1} \underbrace{0\dots0}_{i+1}, i = 0, \dots, r-1;$$
$$H^{(i)} = F_{0}^{(i)}F_{1}^{(i)}\dotsF_{m-1}^{(i)}.$$

$$H^{(\prime)} = F_0^{(\prime)} F_1^{(\prime)} \dots F_n^{(\prime)}$$

We have $|H^{(i)}| = mr2^{i+2}$. Next define

$$b^{t}(0) = \underbrace{H^{(0)}H^{(0)}\dots H^{(0)}}_{x_{0}-times}$$
$$b^{t}(1) = \underbrace{H^{(1)}H^{(1)}\dots H^{(1)}}_{x_{1}-times}$$
$$\vdots$$
$$b^{t}(r-1) = \underbrace{H^{(r-1)}H^{(r-1)}\dots H^{(r-1)}}_{x_{r-1}-times}$$

where

$$x_i = 2^{t+r-1-i}, \ 0 \le i \le r-1,$$

and

$$b^t = b^t(0) \dots b^t(r-1), \ t \ge 0.$$

Then we have

$$\lambda_t = |b^t(i)| = mr2^{t+r+1}, \text{ for } i = 0, \dots, r-1 \text{ (see (13))}$$

and

$$|b^t| = mr^2 2^{t+r+1}$$

Now define the blocks B^t , $t \ge 0$, by (14) and the cocycle φ by (18). Then from (15)

$$p_t = |B^t| = m^{t+1} r^{2t} 2^{r+1} (2^{t+1} - 1), \ t \ge 0.$$

3.2 The case $r \ge 2, m = 1$.

Let $G = \mathbb{Z}/n\mathbb{Z} = \{0, \dots, n-1\}, n \ge 4$. Then define

$$F^{(i)} = \underbrace{\overbrace{00\dots0}^{3r}}_{i+1} \underbrace{r}_{i+1}^{r} \underbrace{0\dots0}_{i+1},$$
$$H^{(i)} = F_0^{(i)} F_1^{(i)} \dots F_{n-1}^{(i)},$$

and

$$b^{t}(i) = \underbrace{H^{(i)}H^{(i)}\dots H^{(i)}}_{x-times}, \quad x = 2^{t}.$$

Next set

$$b^{t} = b^{t}(0) \dots b^{t}(r-1),$$
$$B^{t} = b^{0} \stackrel{r}{\times} b^{1} \stackrel{r}{\times} \dots \stackrel{r}{\times} b^{t}, t \ge 0$$

and define φ by (18). In this case we have

$$\lambda_t = rn2^{t+2} = |b^t(i)|, \quad |b^t| = r^2 n2^{t+2}, \text{ for } i = 0, 1..., r-1 \text{ and } t \ge 0.$$

3.3 Ergodicity and the metric centralizer.

Theorem 1 T_{φ} is ergodic.

Proof. We will prove ergodicity of T_{φ} in both cases 3.1 and 3.2. Assume that there exists a measurable function $f: X \longrightarrow K$ satisfying (1). Then (see (5), (6))

(22)
$$\frac{f(T^n x)}{f(x)} = \gamma(\varphi^{(n)}(x))$$

for μ -a.e. $x \in X$ and every $n \in \mathbb{Z}$.

In particular (22) holds for $n = p_t$, t = 0, 1... The measurability of f and the fact that $\xi_t \longrightarrow \varepsilon$ (the partition into points) in X imply

(23)
$$\gamma(\varphi^{(p_t)}(x)) = 1$$

except of a subset of measure ε_t and $\varepsilon_t \longrightarrow 0$. Let $x \in D_j^{t+1}$, $0 \le j \le p_{t+1} - 1$. We can represent j as

$$(24) j = up_t + vm_t + \rho,$$

where $0 \le u \le \lambda_{t+1} - 1$, $0 \le v \le r - 1$, $0 \le \rho \le m_t - 1$ (see (15)). It follows from (18) (with t := t + 1) that

(25)
$$\varphi^{(p_t)}(x) = B^{t+1}[j+p_t] - B^{t+1}[j]$$

except j for which $u = u_1 = \frac{\lambda}{r} - 1, \dots, u = u_r = \frac{r\lambda}{r} - 1 = \lambda - 1, \lambda = \lambda_{t+1}$. At the same time we have

$$B^{t+1}[j] = b[ur+v] + B^t(v)[\rho], \quad b = b^{t+1} \quad (\text{see } (14), (16)).$$

Then (25) can be rewritten as

(26)
$$\varphi^{(p_t)}(x) = b[(u+1)r+v] - b[ur+v], \quad u \neq u_1, \dots, u_r.$$

The last equality and (23) imply that

(27)
$$\gamma(c[q]) = 1, \quad (q = ur + v)$$

for $q \in V_t \subset \{0, 1, \dots, r\lambda_{t+1} - 1\}$ $\frac{\#V_t}{r\lambda_{t+1}} \ge 1 - \varepsilon_t - \frac{2}{\lambda_{t+1}}$, where $c = c^t$ is given by $c[q] := b[q+r] - b[q], \quad q = 0, \dots, r\lambda - r - 1.$

Further the blocks $c = c^t$ have the following forms:

(28)
$$c = \underbrace{E^{(0)} \dots E^{(0)}}_{(m_{1}, \dots, E^{(0)})} L^{(0)} \underbrace{E^{(1)} \dots E^{(1)}}_{(m_{1}, \dots, E^{(1)})} L^{(1)} \dots \underbrace{E^{(r-1)} \dots E^{(r-1)}}_{(r-1)} \underbrace{E^{(r-1)} \dots E^{(r-1)}}_{(r-1)}$$

where

$$E^{(0)} = \underbrace{0 \dots 0}^{2r} \underbrace{10 \dots 0}_{10 \dots 0} \underbrace{01 \dots 1}_{r}^{r}, |L^{0}| = r,$$
$$E^{(1)} = \underbrace{0 \dots 0}_{0 \dots 0} \underbrace{010 \dots 0}_{101 \dots 1} \underbrace{101 \dots 1}_{r}, |L^{1}| = r,$$
$$\vdots$$

$$E^{(r-1)} = \underbrace{\stackrel{(2^{r+1}-2)r}{\overbrace{0\ldots0}}_{r} \stackrel{r}{\overbrace{0\ldots01}}_{1\ldots10}^{r}}_{1\ldots10}, \ |L^{(r-2)}| = r,$$

in the case 3.1. In the case 3.2 we have

(29)
$$c = \underbrace{E^{(0)} \dots E^{(0)}}_{(n^{(1)} \dots E^{(0)})} L^{(0)} \underbrace{E^{(1)} \dots E^{(1)}}_{(n^{(1)} \dots E^{(1)})} L^{(1)} \dots \underbrace{E^{(r-1)} \dots E^{(r-1)}}_{(n^{(r-1)} \dots E^{(r-1)})}$$

where

$$E^{(0)} = \underbrace{0 \dots 0}^{2r} \underbrace{10 \dots 0}_{10 \dots 0} \underbrace{01 \dots 1}_{10 \dots 1}, \quad |L^{0}| = r,$$

$$E^{(1)} = \underbrace{0 \dots 0}_{2r} \underbrace{010 \dots 0}_{101 \dots 1} \underbrace{101 \dots 1}_{1}, \quad |L^{1}| = r,$$

$$\vdots$$

$$E^{(r-1)} = \underbrace{0 \dots 0}_{0 \dots 0} \underbrace{0 \dots 01}_{1 \dots 10} \underbrace{1 \dots 10}_{1 \dots 10}, \quad |L^{(r-2)}| = r.$$

In both cases 1 appears in c with frequency $> \frac{1}{r^{2r+2}}$ for each $t \ge 0$. Then (27) implies $\gamma(1) = 1$ so γ is trivial. We have proved that T_{φ} is ergodic.

3.4 The centralizer of T_{φ} .

The p_t -adic adding machine (X, \mathcal{B}, μ, T) is a canonical factor of the group extension $(X \times G, \mathcal{B} \times \mathcal{B}_G, \mu \times \nu, T_{\varphi})$. Then $C(T_{\varphi})$ is described in 2.1. We can distinguish the following subgroups of $C(T_{\varphi})$:

$$C_1 = wcl\{T_{\varphi}^n; n \in \mathbb{Z}\}$$
$$C_2 = \{\sigma_a \circ \widetilde{S}; \ \widetilde{S} \in C_1 \text{ and } a \in G\},\$$

$$C_3 = \{ R \sim (S, f, \tau); \ \tau = id \}.$$

Of course C_1, C_2, C_3 are closed subgroups of $C(T_{\varphi})$ and

$$C_1 \subset C_2 \subset C_3 \subset C(T_{\varphi}).$$

We prove in Lemmas 1 and 2 that $C(T_{\varphi})$ reduces to C_2 when φ is the r-Toeplitz cocycle defined in 3.1 or in 3.2.

In the sequel n means the same n as the one defined in 3.2 if this case is considered, and n := m if the case 3.1 is considered.

Lemma 1 $C(T_{\varphi}) = C_3$.

Proof. Take R as in (3). Then the triple (S, f, τ) satisfies (2). Putting $x := Tx, \ldots, T^{p_t-1}x$ in (2) and summing we obtain

(30)
$$f(T^{p_t}x) - f(x) = \varphi^{(p_t)}(Sx) - \tau(\varphi^{(p_t)}(x))$$

for μ -a.e. $x \in X$ and each $t \geq 0$. Using the same arguments as in the proof of Theorem 1 we get from (30)(....) (31)

$$\varphi^{(p_t)}(Sx) - \tau(\varphi^{(p_t)}(x)) = 0$$

for $x \in X_t$ and $\mu(X_t) \longrightarrow 1$.

Further we know [New] that there exists $q_0 \in X$ such that

$$S(x) = x + g_0, \ x \in X.$$

Let

$$g_0 = \sum_{t=0}^{\infty} u_t p_{t-1}, \quad 0 \le u_t \le \lambda_t - 1, \ t \ge 1 \text{ and } 0 \le u_0 \le \lambda_0 r - 1.$$

Fix t and consider (31) on the tower ξ_{t+1} . Let $j_t = \sum_{i=0}^t u_j p_{j-1}$. Then (see (24))

 $j_t = v_0 m_t + \rho_0, \quad j_{t+1} = u_0 p_t + v_0 m_t + \rho_0, \quad u_0 = u_{t+1}.$

If $x \in D_j^{t+1}$, $0 \le j \le p_{t+1} - 1$, then $Sx \in D_{j+j_{t+1}}^{t+1}$, where $j + j_{t+1}$ is taken mod p_{t+1} . We can write

$$j + j_{t+1} = \bar{u}p_t + \bar{v}m_t + \bar{\rho}, \quad 0 \le \bar{u} \le \lambda - 1, \ 0 \le \bar{v} \le r - 1, \ 0 \le \bar{\rho} \le m_t - 1.$$

Let us denote (use (24) for j)

$$q_0 = \begin{cases} u_0 r + v_0 & \text{if} \quad \rho = 0, \dots, m_t - \rho_0 - 1, \\ u_0 r + v_0 + 1 & \text{if} \quad \rho = m_t - \rho_0, \dots, m_t - 1 \end{cases}$$

and q = ur + v, $\bar{q} = \bar{u}r + \bar{v}$. Then $\bar{q} = q + q_0 \pmod{r\lambda_{t+1}}$. Thus (26) and (31) give

(32)
$$c[q+q_0] = \tau(c[q]) \text{ if } q \in V_t \subset \{0, 1, \dots, r\lambda_{t+1} - 1\}$$

and $\frac{1}{\lambda_{t+1}} \# V_t \longrightarrow 1$. Analysing the sequences (28) and (29) it is easy to observe that they do not satisfy (32) with any q_0 whenever $\tau \neq id$ (i.e. $\tau(1) \neq 1$). The Lemma is proved.

Lemma 2 $C(T_{\varphi}) = C_2$.

Proof. Let $R \sim (S, f, id) \in C_3$. Then (32) means

$$c[q+q_0] = c[q], \ q \in V_t.$$

The last condition implies

(33)
$$q_0(t) = q_0 = 2^{r+1} rmw, \ w = w_t$$

in the case 3.1 and

(34)
$$q_0(t) = q_0 = 4rnw, \ w = w_t$$

in the case 3.2, where $0 \le w \le r2^{t+1} - 1$ (see again (28) and (29)). Moreover

$$\min(\frac{q_0(t)}{\lambda_{t+1}}, 1 - \frac{q_0(t)}{\lambda_{t+1}}) \longrightarrow 0.$$

The above condition implies

$$\min(\frac{j_t}{p_t}, 1 - \frac{j_t}{p_t}) \longrightarrow 0$$

Assume that $\frac{j_t}{p_t} \longrightarrow 0$ along some subsequence of t. It follows from the definition of the p_t -adic adding machine that (3

$$5) T^{j_t} \rightharpoonup S.$$

Now we will prove that there exists $a \in G$ such that

(36)
$$\varphi^{(j_t)} \longrightarrow f + a$$

in measure μ .

The function f satisfies the condition (see (2) with $\tau = id$)

$$f(Tx) - f(x) = \varphi(Sx) - \varphi(x).$$

The measurability of f and $\xi_t \longrightarrow \varepsilon$ imply that there exists $a_t \in G$ such that the functions f_t defined by

(37)
$$f_t(y) = a_t + \varphi^{(i)}(Sx) - \varphi^{(i)}(x), \quad y \in D_i^t, \ y = T^i x, \ x \in D_0^t,$$
$$i = 0, \dots, p_t - 1,$$

satisfy the condition

$$f_t \longrightarrow f$$
 in measure μ

We can assume that $a_t = b$. We can rewrite (37) as

$$f_t(y) = b + \varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x) + \varphi^{(i)}(T^{j_t}x) - \varphi^{(i)}(x).$$

Further we have (see (6))

(38)
$$\varphi^{(i)}(T^{j_t}x) - \varphi^{(i)}(x) = \varphi^{(j_t)}(T^i x) - \varphi^{(j_t)}(x).$$

Because of $j_t < m_t$ then $\varphi^{(j_t)}(x) = b_t$ for all $x \in D_0^t$. Assuming again $b_t = b_1$ we can write (38) as

$$\varphi^{(i)}(T^{j_t}x) - \varphi^{(i)}(x) = \varphi^{(j_t)}(y) - b_1$$

and (37) as (39)

$$f_t(y) = b_2 + \varphi^{(j_t)}(y) + \varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x)$$

Assume that

$$x \in D_{up_t}^{t+1}, \quad 0 \le u \le \lambda_{t+1} - 1.$$

Then

$$T^{j_t} x \in D^{t+1}_{up_t+j_t}$$
 and $Sx \in D^{t+1}_{(u+u_0)p_t+j_t}$

where $u_0 = \frac{q_0}{r}$. For $i \le p_t - j_t - 1$, $i = vm_t + \rho$ and $u \ne u_1, \dots, u_r$ we have

$$\varphi^{(i)}(T^{j_t}x) = B^{t+1}[up_t + j_t + i] - B^{t+1}[up_t + j_t] = b^{t+1}[ur + v] - b^{t+1}[ur]$$

and

$$\varphi^{(i)}(Sx) = B^{t+1}[(u+u_0)p_t + j_t + i] - B^{t+1}[(u+u_0)p_t + j_t]$$
$$= b^{t+1}[(u+u_0)r + v] - b^{t+1}[(u+u_0)r]$$

Thus

$$\varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x) = (b[q+q_0] - b[q]) - (b[ur+q_0] - b[ur]), \quad q = ur + v.$$

Then (33) and (34) imply

(40)
$$\varphi^{(i)}(Sx) - \varphi^{(i)}(T^{j_t}x) = 0$$

except of a set of measure $\leq \frac{r}{\lambda_t} + \frac{j_t}{p_t}$. Now (39) and (40) imply (36) with $a = -b_2$. Notice that (35) and (36) and Theorem B imply

$$T^{j_t}_{\varphi} \rightharpoonup R \circ \sigma_a$$

This proves the Lemma.

To prove that $\# \frac{C(T_{\varphi})}{wcl\{T_{\varphi}^n; n \in \mathbb{Z}\}} = m$ in case 3.1 it is sufficient to show that $\sigma_a \notin C_1$ whenever $a \in \mathbb{Z}_m$, $a \neq 0$. In the case 3.2 we will prove that $\sigma_a \in C_1$ for every $a \in \mathbb{Z}_n$ what implies

$$#\frac{C(T_{\varphi})}{wcl\{T_{\varphi}^{n}; n \in \mathbb{Z}\}} = 1.$$

To do this we need estimations of the *d*-distance between blocks occurring in ω and $\omega_t, t \geq 0.$

3.5*d*-bar distance between blocks.

The sequence $\omega = b^0 \stackrel{r}{\times} b^1 \stackrel{r}{\times} \dots$ is a concatenation of the blocks of the form

$$E_k(t) = B^t \stackrel{r}{\times} \bar{e}_k, \quad E_k^{(s)}(t) = B^t \stackrel{r}{\times} \bar{e}_k^{(s)}, \quad k \in \mathbb{Z}_n, \quad s = 0, \dots, r-1,$$

where $\bar{e}_k = (k, \dots, k), \quad \bar{e}_k^{(s)} = (k, \dots, k, \underbrace{k+1}_{s^{th} \text{ place}}, k, \dots, k).$

The sequence $\omega_t = b^t \stackrel{r}{\times} b^{t+1} \stackrel{r}{\times} \dots$ is a concatenation of the blocks of the form

$$e_k(t) = b^t \stackrel{r}{\times} \bar{e}_k, \quad e_k^{(s)}(t) = b^t \stackrel{r}{\times} \bar{e}_k^{(s)}.$$

The blocks $E_k = E_k(t)$, $E_k^{(s)} = E_k^{(s)}(t)$ are called *t*-symbols and the blocks $e_k =$ $e_k(t), e_k^{(s)} = e_k^{(s)}(t)$ are called "small" *t*-symbols. Each fragment $\omega[kp_t, (k+1)p_t - 1]$ of $\omega, k \in \mathbb{Z}$, is a *t*-symbol, and $\omega_t[k\lambda_t r, (k+1)\lambda_t r - 1]$ is a "small" *t*-symbol. The positions $[kp_t, (k+1)p_t - 1]$ and $[k\lambda_t r, (k+1)\lambda_t r - 1]$ will be called the natural positions in ω and ω_t respectively.

We will examine *d*-bar distance between the blocks mentioned above or between their special fragments. In particular, we will examine the pairs

$$b_k(i)b_k(i+1), b_k(i)b_{k+1}(i+1), b_{k+1}(i)b_k(i+1)$$

for $i = 0, \ldots, r - 2$ and $k \in \mathbb{Z}_n$ and

$$b_k(r-1)b_k(0), \ b_k(r-1)b_{k+1}(0)$$

Proposition 1 Let

(41)
$$\begin{cases} I = b_0^t(i)[0, \lambda_t - j - 1], & j \le \frac{1}{2}\lambda_t, \\ II = b_k^t(i')[j, \lambda_t - 1], & k \in \mathbb{Z}_n, \ i, i' = 0, \dots, r - 1, \ t \ge 0. \end{cases}$$

If

(42)
$$d(I,II) < \frac{1}{r2^{r+2}}$$

then i' = i and

(43)
$$j = (n-k)r2^{i+2} + anr2^{i+2}, a \ge 0$$
 if 3.1 holds

(44)
$$j = (n-k)r4 + anr4, a \ge 0, if 3.2 holds.$$

Proof. It is easy to observe that if $i' \neq i$ or i' = i and (43) (or (44) in the case 3.2) does not hold then every subblock $F_k^{(i)}$ of I differs from the corresponding fragment in II at least in one position. Since $j \leq \frac{1}{2\lambda_t}$, this would imply the converse inequality in (42).

In the Propositions 2-6 the blocks $b_k^t(i) = b_k(i), \ k \in \mathbb{Z}_n, \ 0 \le i < r$, are those defined in 3.1.

Proposition 2 Let

Proposition 2 Let

$$I = b_0(0) \dots b_0(r-1)[0, r\lambda_t - j - 1],$$

 $II = b_k(0) \dots b_k(r-1)[j, r\lambda_t - 1],$
 $j \le \frac{1}{2}r\lambda_t, \quad k \in \mathbb{Z}_n.$
If
(45)
 $d(I, II) < \frac{1}{r^22^{r+3}}$

then $j \leq \frac{1}{2}\lambda_t$, k = 0, and (46)

Proof. If $j > \frac{1}{2}\lambda_t$ then we can find subblocks I_1 of I and II_1 of II such that II_1 is under I_1 (see Figure 1) having the form (41) with different j's and with $i' \neq i$.

 $j \equiv 0 \pmod{nr2^{r+1}}.$

It follows from the Proposition 1 that $d(I_1, II_1) \geq \frac{1}{r^{2^{r+2}}}$ and using (11) we obtain

$$d(I, II) \ge \frac{\frac{1}{2}\lambda_t}{r\lambda_t} d(I_1.II_1) \ge \frac{1}{r^2 2^{r+3}}.$$

in spite of (45). Therefore $j \leq \frac{1}{2}\lambda_t$.

It follows from (11) and (45) that

(47)
$$d(I_i, II_i) < \frac{1}{r2^{r+2}}$$
 for $i = 0, \dots, r-1$,

where

$$I_i = b_0(i)[0, \lambda_t - j - 1], \ II_i = b_k(i)[j, \lambda_t - 1].$$

Then (47) implies (43) to hold for each i = 0, ..., r - 1. In particular taking i = 0, 1 we get

 $-kr4 + 2kr4 = a_1nr4.$

Thus k = 0 in \mathbb{Z}_n . The Proposition is proved.

Proposition 3 Let

$$I = b_k(i)b_{k+1}(i+1)[0, 2\lambda - j - 1], \quad j \le \frac{1}{2}\lambda; \ \lambda = \lambda_t,$$

$$\begin{split} II &= b_{k_1}(i)b_{k_2}(i+1)[j,2\lambda-1], \quad i=0,\ldots,r-2, \quad k,k_1,k_2 \in \mathbb{Z}_n\\ and \ k_2 &= k_1+1 \ or \ k_2 = k_1-1.\\ If \\ (48) \qquad \qquad d(I,II) < \frac{1}{r2^{r+4}}\\ then \end{split}$$

(49)
$$(k_1k_2) = (k, k+1) \text{ or } (k_1k_2) = (k+4, k+3) \text{ if } n \ge 3$$

and

(50)
$$(k_1k_2) = (k, k+1)$$
 if $n = 2$.

Proof. It follows from (48) and (11) that

$$d(I_1, II_1) < \frac{1}{r2^{r+2}}$$

and

$$d(I_2, II_2) < \frac{1}{r2^{r+2}}$$

where

$$I_1 = b_k(i)[0, \lambda - j - 1], \quad II_1 = b_{k_1}(i)[j, \lambda - 1],$$

$$I_2 = b_{k+1}(i+1)[0, \lambda - j - 1], \quad II_2 = b_{k_2}(i+1)[j, \lambda - 1].$$

Now, we apply the Proposition 1. It follows from (43) that

$$k - k_1 = 2(k + 1 - k_2) \pmod{n}$$

The above condition implies (49) and (50). \blacksquare

Proposition 4 Let

$$I_{k} = b_{k}(r-1)b_{k}(0)[0, 2\lambda - j - 1] \text{ or } I'_{k} = b_{k}(r-1)b_{k+1}(0)[0, 2\lambda - j - 1],$$

$$II = b_{k_{1}}(r-1)b_{k_{2}}(0)[j, 2\lambda - 1], \quad k, k_{1}, k_{2} \in \mathbb{Z}_{n}, \quad j \leq \frac{1}{2}\lambda_{t},$$
and
$$(51) \qquad \qquad k_{2} = k_{1} \text{ or } k_{2} = k_{1} + 1.$$

$$If \qquad \qquad d(I, II) < \frac{1}{r2^{r+4}}, \quad I = I_{k} \text{ or } I'_{k},$$
then
$$(52) \qquad \qquad k_{1} = k_{2} = k \text{ if } I = I_{k} \text{ and } k_{1} = k, k_{2} = k + 1 \text{ if } I = I'_{k}$$
where ever

whenever

 $(2^{r-1} - 1, n) > 1,$ (53)

and there is a unique $l \in \mathbb{Z}_n$ such that

(54)
$$\begin{cases} (k_1k_2) = (kk) \text{ or } (k_1k_2) = (l, l+1) \text{ and } l \text{ satisfies} \\ l(2^{r-1}-1) = (2^{r-1}-1)k+1 \text{ in } \mathbb{Z}_n \text{ if } I = I_k, \\ and \\ (k_1k_2) = (k, k+1) \text{ or } (k_1k_2) = (ll) \text{ and } l \text{ satisfies} \\ l(2^{r-1}-1) = (2^{r-1}-1)k-1 \text{ in } \mathbb{Z}_n \text{ if } I = I'_k, \end{cases}$$

whenever

(55)
$$(2^{r-1} - 1, n) = 1$$

Proof. Using the same arguments as in the proof of the Proposition 3 we obtain from (43)

$$(k_1 - k)2^{r-1} = k - k_2 \pmod{n}$$
 if $I = I_k$

and

$$(k_1 - k)2^{r-1} = k - k_2 + 1 \pmod{n}$$
 if $I = I'_k$.

The above, (51), (53) and (55) imply (52) and (54) respectively.

The next Proposition is an easy consequence of (9) and the definition of the blocks $b(0),\ldots,b(r-1).$

Proposition 5 Let

$$I_{l} = b_{l}(i)[0, \lambda_{t} - j - 1], \quad II_{k} = b_{k}(i)[j, \lambda_{t} - 1]$$
$$j \le \frac{1}{2}\lambda_{t}, \quad k, l \in \mathbb{Z}_{n}, \quad 0 \le i \le r - 1.$$

If $j \equiv 0 \pmod{nr2^{r+1}}$ and $k \neq l$ then

$$d(I_l, II_k) = 1.$$

Proposition 6 Let

$$I = b^t \stackrel{r}{\times} C, \quad II = b^t \stackrel{r}{\times} D[j, j + \lambda_t |D| - 1], \quad 0 \le j \le r\lambda_t - 1$$

 $\begin{array}{ll} \mbox{where } |C| \geq 3r, |D| = |C| + r, \quad C, D \subset \omega_{t+1} \ (see \ (21)) \ and \ C = \omega_{t+1}[pr, pr + |C| - 1], D = \\ \omega_{t+1}[qr, qr + |D| - 1]. \ If \\ (56) \qquad \qquad d(I, II) < \delta, \ \delta < \frac{1}{3r^2 2^{r+3}}, \\ \mbox{then either} \\ (57) \qquad \qquad j < \delta r 2^{r+1} \lambda_t \ and \ d(C, D_1) < \delta \\ \mbox{or} \\ (58) \qquad \qquad r \lambda_t - \delta r 2^{r+1} \lambda_t < j \leq r \lambda_t \ and \ d(C, D_1) < \delta, \\ \mbox{where} \end{array}$

$$D_1 = D[0, |D| - r - 1] \text{ if } j \le \frac{1}{2}r\lambda_t,$$
$$D_1 = D[r, |D| - 1] \text{ if } j > \frac{1}{2}r\lambda_t.$$

Proof. We can represent C and D as

$$C = C_1 C_2 \dots C_s, \ D = D_1 D_2 \dots D_s D_{s+1},$$

where

$$|C_1| = \ldots = |C_s| = |D_1| = \ldots = |D_s| = |D_{s+1}| = r, \ s \ge 3,$$

and every $C_1, \ldots, C_s, D_1, \ldots, D_{s+1}$ is equal to one of the blocks $\bar{e}_k, \bar{e}_k^{(v)}, k \in \mathbb{Z}_n, v = 0, \ldots, r-1$ (see 3.5). Assume that $j \leq \frac{1}{2}r\lambda_t$. Using (12) we get

(59)
$$d(I,II) = \frac{1}{s} \sum_{p=1}^{s} (b \stackrel{r}{\times} C_p, A_p),$$

where

$$A_p = (b \stackrel{r}{\times} D_p)(b \stackrel{r}{\times} D_{p+1})[j, j+r\lambda_t - 1].$$

Then (56) implies that

$$d(b \stackrel{r}{\times} C_p, A_p) < \frac{1}{3r^2 2^{r+3}}$$

for at least one p. Using the same arguments as in the proof of the Proposition 2 we obtain $j \leq \frac{1}{2}\lambda_t$.

Let

$$Q = \{1 \le p \le s, C_p \text{ and } D_p \text{ are equal } \bar{e}_k, \bar{e}_l \text{ for some } k, l \in \mathbb{Z}_n\}.$$

It follows from the definitions of ω, ω_t and $b^{t's}$ that

$$\#Q \ge \frac{1}{3}s.$$

This inequality, (56), and (59), imply

$$\frac{1}{|Q||} \sum_{p \in Q} d(b \stackrel{r}{\times} C_p, A_p) < \frac{1}{r^2 2^{r+3}}.$$

Now we conclude that there is at least one $p \in Q$ such that

$$d(b \stackrel{r}{\times} C_p, A_p) < \frac{1}{r^2 2^{r+3}}.$$

It follows from the Proposition 2 that $j \equiv 0 \pmod{nr2^{r+1}}$. Now, using (10) and (12) again we get (see Figure 2)

(60)
$$d(I,II) = \frac{1}{r} \sum_{i=0}^{r-1} \frac{1}{s} ((1 - \frac{j}{\lambda_t}) \sum_{u=1}^s d(L_{ui}, M_{ui}) + \frac{j}{\lambda_t} \sum_{u=1}^s d(\bar{L}_{ui}, \bar{M}_{ui})),$$

where

$$L_{ui} = b_{C_u[i]}^t(i)[0, \lambda_t - j - 1], \quad M_{ui} = b_{D_u[i]}^t(i)[j, \lambda_t - 1],$$

$$\bar{L}_{ui} = b_{C_u[i]}^t(i)[\lambda_t - j, \lambda_t - 1], \quad \bar{M}_{ui} = b_{D_u[i]}^t(i + 1)[0, j - 1].$$

Figure 2

It is not hard to remark that if $j \neq 0$

(61)
$$d(\bar{L}_{ui}, \bar{M}_{ui}) \ge \frac{1}{r2^{r+1}}$$

for every u and i, $1 \le u \le s$, $0 \le i \le r - 1$. Let

$$a = \#\{0 \le k \le |C| - 1, \ C[k] \ne D[k]\}.$$

Then using the Proposition 5, (60) and (61) we get

(62)
$$\delta > d(I,II) \ge \frac{a}{|C|} (1 - \frac{j}{\lambda_t} + \frac{j}{\lambda_t} \frac{1}{r2^{r+1}}).$$

The above gives

$$\delta > \frac{a}{|C|}(1 - \frac{j}{\lambda_t}) \ge \frac{a}{|C|}\frac{1}{2}$$

and then $\frac{a}{|C|} < 2\delta$. This inequality, (56) and (62) imply

$$\delta > \frac{a}{|C|} + \frac{j}{\lambda_t} (\frac{1}{r2^{r+1}} - \frac{a}{|C|}) > \frac{a}{|C|} + \frac{j}{\lambda_t} (\frac{1}{r2^{r+1}} - 2\delta) > \frac{a}{|C|} = d(C, D_1).$$

We have obtained the second inequality of (57). To get the first inequality of (57) we use (62) to obtain

$$\delta > \frac{j}{\lambda_t} \frac{1}{r2^{r+1}}.$$

This implies (57). We have proved the Proposition if $j \leq \frac{1}{2}r\lambda_t$. The case $\frac{1}{2}r\lambda_t < j < r\lambda_t$ leads to (58) in a similar way. The Proposition is proved.

Proposition 7 Let

$$I = B^{t} \stackrel{r}{\times} C, \quad II = B^{t} \stackrel{r}{\times} D[j, j + m_{t}|D| - 1], \quad 0 \le j \le p_{t} - 1,$$

where C and D satisfy the same conditions as in the Proposition 6. If

$$d(I,II) < \delta, \quad \delta < \frac{1}{3r^2 2^{r+3}},$$

then either

$$j < \delta r 2^{r+} p_t$$
 and $d(C, D_1) < \delta$

or

$$p_t - \delta r 2^{r+1} p_t < j < p_t \text{ and } d(C, D_1) < \delta$$

where

$$D_1 = D[0, |D| - r - 1]$$
 if $j \le \frac{1}{2}p_t$,

and

$$D_1 = D[r, |D| - 1]$$
 if $r > \frac{1}{2}p_t$.

Proof. We use an induction argument and can repeat the proof of Lemma 3 from [FiKw] using (8), (9) and the Proposition 6 instead of Lemma 2 from [FeKw]. ■

3.6 *d*-bar distance between blocks - the case 3.2.

Using the same methods as in 3.5 we can estimate the distance between blocks $b_k^t(i)$ and $B_k^t(i)$, $i = 0, \ldots, r-1$, $k \in \mathbb{Z}_n$, $t \ge 0$, defined in the case 3.2.

As an easy consequence of the Proposition 1 we get

Proposition 8 Let

$$I_l = b_{l_0}(0) \dots b_{l_{r-1}}(r-1)[0, r\lambda_t - j - 1],$$

$$II_k = b_{k_0}(0) \dots b_{k_{r-1}}(r-1)[j, r\lambda_t - 1],$$

 $j \leq \frac{1}{2}r\lambda_t$, where (l_0, \ldots, l_{r-1}) (resp. (k_0, \ldots, k_{r-1})) is of the form \bar{e}_l or $\bar{e}_l^{(v)}$ (resp. \bar{e}_k or $\bar{e}_k^{(v')}$), $k, l \in \mathbb{Z}_n$ and $v, v' = 0, \ldots, r-1$. If

$$d(I_l, II_k) < \frac{1}{r^2 2^{r+3}}$$

then $j \leq \frac{1}{2}\lambda_t$ and there is a unique $s \in \mathbb{Z}_n$, s = s(t), such that $l_i = k_i + s$ for every $i = 0, \ldots, \overline{r} - 1$. Moreover j has a form

 $j = (n-s)r4 + anr4, \quad a \ge 0.$

As an analogue of the Proposition 5 we obtain

Proposition 9 Let I_l, II_k be as in the Proposition 5,

$$j \leq \frac{1}{2}\lambda_t \text{ and } j \equiv (n-s) \pmod{4rn}$$

for some $s \in \mathbb{Z}_n$. Then

$$d(I_l, II_k) = 1$$
 whenever $k - l \neq s$

Then using the Propositions 8 and 9 we have

Proposition 10 Let I and II be as in the Proposition 6 and

$$|C| \ge r, |D| = |C| + r, \quad C, D \subset \omega_{t+1},$$

$$C = \omega_{t+1}[pr, pr + |C| - 1], \quad D = \omega_{t+1}[qr, qr + |D| - 1].$$

If

$$d(I,II)<\delta,\quad \delta<\frac{1}{3r^22^{r+3}},$$

then there is an unique $s \in \mathbb{Z}_n$, s = s(t), such that

 $j < \delta r 2^{r+1} \lambda_t$ and $d(C, D_1) < \delta$

or

$$r\lambda_t - \delta r 2^{r+1}\lambda_t < j \le r\lambda_t$$
 and $d(C, D_1) < \delta$

 $r\lambda_t - \delta r 2^{j+1}\lambda_t < j \le r\lambda_t \text{ and } d(C, D_1) < \delta$ where $D_1 = D[0, |D| - r - 1] = C + s$ if $j \le \frac{1}{2}\lambda_t r$, and $D_1 = D[r, |D| - 1] = C + s$ if $j > \frac{1}{2}r\lambda_t.$

Using arguments as in Lemma 3 in [FiKw] and the Proposition 10 we get

Proposition 11 Let I and II be as in the Proposition 7 and C, D satisfy the same conditions as in the Proposition 10.

If

$$d(I,II) < \delta, \quad \delta < \frac{1}{3r^2 2^{r+3}},$$

there exists an unique $s \in \mathbb{Z}_n$, s = s(t), such that either

$$j < \delta r 2^{r+1} p_t$$
 and $d(C, D_1) < \delta$

or

$$p_t \delta r 2^{r+1} p_t < j < p_t \text{ and } d(C, D_1) < \delta$$

where

$$D_1 = D[0, |D| - r - 1] + s \text{ if } j \le \frac{1}{2}p_t$$

and

$$D_1 = D[r, |D| - 1] + s \text{ if } j > \frac{1}{2}p_t$$

3.7The centralizer of T_{φ} (continuation).

In 3.4 we have proved that $C(T_{\varphi})$ consists of the elements $R \circ \sigma_a$, where R is a limit of powers of T_{φ} and σ_a is defined by (4), $a \in \mathbb{Z}_n$. Now we are in a position to show that $\# \frac{C(T_{\varphi})}{wcl\{T_{\varphi}^n; n \in \mathbb{Z}\}} = \begin{cases} n & \text{in the case } 3.1, \\ 1 & \text{in the case } 3.2 \end{cases}$

Lemma 3 If the case 3.1 holds and $\sigma_a \in C_1$ then a = 0.

Proof. Let us suppose that $T_{\varphi}^{n_s} \rightharpoonup \sigma_a, \ a \in \mathbb{Z}_n$. Then Corollary 1 says that $\varphi^{(n_s)} \longrightarrow a$ in measure. Let $\{ r \in X \cdot \phi^{(n_s)}(x) \neq a \}.$ (63)

)
$$\varepsilon_s = \mu\{x \in X; \varphi^{(n_s)}(x) \neq a\}$$

We have $\varepsilon_s \longrightarrow 0$. Now for every s find t_s such that

(64)
$$\frac{n_s}{p_{t_s}} < \frac{\varepsilon_s}{r}.$$

To shorten notation we let $t := t_s + 1$, $\bar{t} := t_s$. Take $x \in D_j^t$. Then using (18) we get

(65)
$$\varphi^{(n_s)}(x) = B^t[j + n_s] - B^t[j]$$

except of j's satisfying $m_t - 1 - n_s \le j \le m_t - 1$, $2m_t - 1 - n_s \le j \le 2m_t - 1$, $\dots, p_t - 1$ $1 - n_s \leq j \leq p_t - 1$. Then (63) and (64) imply

$$\frac{1}{p_t} \#\{0 \le j \le p_t - 1, \ B^t[j + n_s] - B^t[j] \ne a\} < \varepsilon_s + \varepsilon_s = 2\varepsilon_s$$

This means that

$$d(B^{t}[0, p_{t} - n_{s} - 1], B^{t}_{-a}[n_{s}, p_{t} - 1]) < 2\varepsilon_{s}$$

We can write

$$B^t = B^{\overline{t}} \stackrel{r}{\times} b^t, \quad B^t_{-a} = B^{\overline{t}} \stackrel{r}{\times} b^t_{-a}.$$

If $\varepsilon_s < \frac{1}{6r^2 2^{r+3}}$ then we apply Proposition 7 to the blocks $I = B^{\bar{t}} \stackrel{r}{\times} b^t$ and $II = B^{\bar{t}} \stackrel{r}{\times}$ b_{-a}^t . As a consequence we obtain

$$d(b^t, b^t_{-a}) < 2\varepsilon_s$$

This equality implies (Proposition 2) a = 0. The Lemma is proved.

¿From Lemmas 2 and 3 we obtain

Theorem 2 $\# \frac{C(T_{\varphi})}{wcl\{T_{\varphi}^n, n \in \mathbb{Z}\}} = n$ if the case 3.1 holds.

Now, we examine the case 3.2. It follows from the definition of the blocks $b_0(i) =$ $b_0^t(i), i = 0, \dots, r-1, a \in \mathbb{Z}_n$ that

(66)
$$b(i)[(n-a)4r, \lambda - 1] = b_a(i)[0, \lambda - (n-a)4r - 1],$$

for every i = 0, ..., r - 1.

Set $n_t = (n-a)4rp_{t-1}$. Then (66) implies

$$B^t(i)[j+n_t] - B^t(i)[j] = a$$

for $j = 0, ..., p_t - n_t - 1$, and i = 0, ..., r - 1. (65) and the above imply $\varphi^{(n_t)}(x) = a$ except of a set of measure $< r \frac{n_t}{p_t} \le \frac{4r^2 n}{\lambda_t}$.

Hence $\varphi^{(n_t)} \longrightarrow a$ in measure which implies that $T_{\varphi}^{n_t} \rightharpoonup \sigma_a, a \in \mathbb{Z}_n$. We have shown that $\sigma_a \in C_1$ for every $a \in \mathbb{Z}_n$ and as a consequence of Lemma 2 we get

Theorem 3 $\# \frac{C(T_{\varphi})}{wcl\{T_{\varphi}^n; n \in \mathbb{Z}\}} = 1$ if the case 3.2 holds.

Theorem 3' $wcl\{T_{\varphi}^{n}, n \in Z\}$ is uncountable. **Proof.** Let $g_{0} = \sum_{0}^{\infty} u_{t}p_{t-1}, \quad u_{t} = w_{t}(rm2^{r+1})$ in the case (3.1) and $u_{t} = w_{t}(4rn)$ in the case (3.2) $0 \leq u_{t} \leq r\lambda_{t} - 1$ and assume that

$$\sum_{t=0}^{\infty}\min(\frac{w_t}{r2^t}, 1-\frac{w_t}{r2^t}) < \infty.$$

Repeating the same arguments as in Lemma 4 of [GoKwLeLi] we can construct a measurable function $f: X \longrightarrow G$ such that

$$f(Tx) - f(x) = \varphi(Sx) - \varphi(x)$$
, for a. e. $x \in X$.

Thus the triple $R = (S, f, id) \in C(T_{\varphi})$. Of course, there is a continuum of g_0 's in X satisfying the above conditions. Hence $C(T_{\varphi})$ is uncountable. Then Theorem 2 and 3 imply $wcl\{T_{\varphi}^n, n \in Z\}$ is uncountable.

Rank of T_{φ} is r. 4

In this section we use the shift representation $(\Omega_{\omega}, T_{\sigma})$ of $(X \times \mathbb{Z}_n, T\varphi)$ (see 2.3) and the definition of rank given in 2.2.

The frequencies of *t*-symbols and an estimation of the rank. 4.1

Let $Fr(E, \omega)$ be the average frequency of a t-symbol E (see 3.5) appearing in ω at natural positions. Similarly, let $Fr(e, \omega_t)$ denote the average frequency of a "small" t-symbol e appearing in ω_t at natural positions. It is easy to get the following equalities;

(67)
$$\begin{cases} Fr(E_k,\omega) = Fr(e_k,\omega_t) = \frac{1}{rn} \sum_{i=0}^{r-1} (1 - \frac{1}{2^{i+2}}) = \frac{1}{n} [1 - \frac{1}{r} \sum_{i=0}^{r-1} \frac{1}{2^{i+2}}] \\ \text{and} \\ Fr(E_k^{(s)},\omega) = Fr(e_k^{(s)},\omega_t) = \frac{1}{rn2^{s+2}}, \quad s = 0, \dots, r-1, \quad k \in \mathbb{Z}_n, \end{cases}$$

if the case 3.1 holds. In the case 3.2 we have

(68)
$$\begin{cases} Fr(E_k,\omega) = Fr(e_k,\omega_t) = \frac{3}{4n}, \\ Fr(E_k^{(s)},\omega) = Fr(e_k^{(s)},\omega_t) = \frac{1}{4nr}, \quad k \in \mathbb{Z}_n, \ s = 0, \dots, r-1. \end{cases}$$

Proposition 12 $r(T_{\varphi}) \leq r$.

Proof. Consider the blocks

$$L_k^{(s)} = L_k^{(s)}(t) = B^t \stackrel{r}{\times} b_k^{t+1}(s), \quad s = 0, \dots, r-1, \ t \ge 0, \ k \in \mathbb{Z}_n.$$

We have

$$E_k = L_k^{(0)} \dots L_k^{(r-1)}, \quad E_k^{(s)} = L_k^{(0)} \dots L_k^{(s-1)} L_{k+1}^{(s)} L_k^{(s+1)} \dots L_k^{(r-1)}$$

for every $k \in \mathbb{Z}_n$ and $s = 0, \ldots, r - 1$.

Because the blocks $E_k, E_k^{(s)}$ cover completely the sequence ω then the blocks $L_k^{(0)} \dots L_k^{(r-1)}, k \in \mathbb{Z}_n$, also cover ω .

We know that

$$b^{t+1}(s)[0,\lambda_{t+1} - knr2^{r+1}] = b^{t+1}_{-k}(0)[knr2^{r+1},\lambda_{t+1} - 1],$$

$$k \in \mathbb{Z}_n, s = 0, \dots, r-1, \quad \text{if 3.1 holds,}$$

and

$$b^{t+1}(s)[0, \lambda_{t+1} - knr4] = b^{t+1}_{-k}(0)[knr4, \lambda_{t+1} - 1],$$

$$k \in \mathbb{Z}_n, s = 0, \dots, r-1, \quad \text{if 3.2 holds.}$$

The last equalities imply that the block $L_0^{(s)}$ cover each block $L_k^{(s)}$, $k \in \mathbb{Z}_n$, except of a part with the length $\leq n^2 2^{r+1} p_t$ in the case 3.1 and $\leq n^2 4 p_t$ in the case 3.2, for $s = 0, \ldots, r - 1$. Thus the blocks $L_0^{(0)}, \ldots, L_0^{(r-1)}$ cover the sequence ω except of a part with the density $\leq \frac{n^2 2^{r+1}}{\lambda_{t+1}}$ if 3.1 holds and $\leq \frac{n^2 4}{\lambda_{t+1}}$ if 3.2 holds. Simultaneously $|L_0^{(s)}(t)| \xrightarrow{t \to \infty} \infty$. According to the definition of the rank (see 2.2) we have $r(T_{\varphi}) \leq r$.

4.2 Special subblocks of ω_t .

Fix $t \geq 0$. We distinguish special subblocks C of ω_t of the form $b^t \times^r \bar{C}$, where \bar{C} is a strict subblock of one of the following blocks (cf. 3.5)

(69)
$$\begin{cases} e_k e_k, \ e_k e_k^{(s)}, \ e_k^{(s)} e_{k+1}, \ k \in \mathbb{Z}_n, \ s = 0, \dots, r-1, \\ \text{where } e_k = e_k(t+1), \ e_k^{(s)} = e_k^{(s)}(t+1), \\ \text{if the case } 3.2 \text{ is considered}, \end{cases}$$

or

(70)
$$\begin{cases} e_k e_k e_k e_k, e_k e_k e_k e_k^{(s)}, e_k e_k e_k^{(s)} e_{k+1}, e_k e_k^{(s)} e_{k+1} e_{k+1}, e_k^{(s)} e_{k+1} e_{k+1} e_{k+1} \\ k \in \mathbb{Z}_n, s = 0, \dots, r-1, \\ \text{if the case 3.1 is considered.} \end{cases}$$

Notice that blocks (69) are all pairs of "small" (t+1)-symbols appearing in ω_{t+1} , as well as the blocks (70) are all possible quadruples of "small" (t+1)-symbols appearing in ω_{t+1} . Let us list the different cases we shall deal with afterwards;

$$\mathbf{A})\bar{C} \subset b_{k_0}^{t+1}(i_0) \text{ for some } k_0 \in \mathbb{Z}_n \text{ and } i_0 = 0, \dots, r-1 \text{ (cases 3.1 or 3.2);} \\ \mathbf{B}) \text{ (the case 3.2) } \bar{C} = b_{k_{i_0}}(i_0) \dots b_{k_{r-1}}(r-1) \mid b_{l_0} \dots b_{l_{i_1}}(i_1) \text{ where } b(i) = b^{t+1}(i), \ i_0 > 0, \ i_1 < r-1. \\ E := (k_{i_0} \dots k_{r-1} l_0 \dots l_{i_1}) \text{ is contained in one of the following blocks;}$$

(71)
$$\bar{e}_k \bar{e}_k, \bar{e}_k \bar{e}_k^{(s)}, \bar{e}_k^{(s)} \bar{e}_{k+1}, \ k \in \mathbb{Z}_n, \ s = 0, \dots, r-1,$$

and $2 \le |E| < 2r;$

B') (the case 3.1) $\bar{C} = b_{k_{i_0}}(i_0)..b_{k_{r-1}}(r-1) | b_{u_0}(0)..b_{u_{r-1}}(r-1) | b_{v_0}(0)..b_{v_{r-1}}(r-1) | b_{l_0}(0)..b_{l_{i_1}}(i_1)$ and $E = (k_{i_0}...k_{r-1} | u_0...u_{r-1} | v_0...v_{r-1} | l_0...l_{i_1}), 2 \leq |E| < 4r, i_0 > 0, i_1 < r-1$, is contained in one of the blocks

(72)
$$\bar{e}_k \bar{e}_k \bar{e}_k \bar{e}_k \bar{e}_k \bar{e}_k \bar{e}_k \bar{e}_k \bar{e}_k^{(s)}, \bar{e}_k \bar{e}_k \bar{e}_k^{(s)} \bar{e}_{k+1}, \bar{e}_k \bar{e}_k^{(s)} \bar{e}_{k+1} \bar{e}_{k+1}, \bar{e}_k^{(s)} \bar{e}_{k+1} \bar{e}_{k+1} \bar{e}_{k+1} \bar{e}_{k+1}$$

In general we can write

$$\bar{C} = \bar{C}_1 \bar{C}_2 \bar{C}_3$$

where \bar{C}_2 is as in A) or as in B) (the case 3.2) or B') (the case 3.1),

(73)

(74)
$$\begin{cases} \bar{C}_1 = b_{k'}^{t+1}(i_0 - 1)[l_1r, \lambda - 1], & \bar{C}_3 = b_{k''}^{t+1}(i_1 + 1)[0, l_2r - 0] \\ 0 < l_1 \le \lambda - 1, & 0 < l_2 \le \lambda - 1, & \lambda = \lambda_{t+1}, \end{cases}$$

and k'Ek'' is contained in one of the blocks (71) or (72) respectively (E is defined by \overline{C}_2).

Then we can distinguish the next special kinds of blocks (73) for given $\delta > 0$:

G1)
$$\frac{|C_1|}{|\overline{C}|} > \delta \text{ and } \frac{|C_3|}{|\overline{C}|} > \delta,$$

- $\frac{|\bar{C}_1|}{|\bar{C}|} > \delta \text{ and } \frac{|\bar{C}_3|}{|\bar{C}|} \le \delta,$ G2)
- G3)
- $\frac{|\bar{C}_1|}{|\bar{C}|} \leq \delta \text{ and } \frac{|\bar{C}_3|}{|\bar{C}|} > \delta,$ $\frac{|\bar{C}_1|}{|\bar{C}|} \leq \delta \text{ and } \frac{|\bar{C}_3|}{|\bar{C}|} \leq \delta.$ G4)

4.3
$$r(T_{\varphi}) = r$$
: the case **3.2**.

Take $0 < \delta^2 < \frac{1}{r^2 2^{2r+3}}$.

Proposition 13 Assume that \overline{C} is as in B) and let $d(C, D) < \delta^2, D \subset \omega_t$. Then D has a form

(75)
$$D = (b^t \times \overline{D})[j, j + |D| - 1], \text{ where } \overline{D} \subset \omega_{t+1}$$

and
(76)
$$\begin{cases} \bar{D} = b_{k'_{i_0}}^{t+1}(i_0) \dots b_{k'_{r-1}}^{t+1}(r-1) \mid b_{l'_0}^{t+1}(0) \dots b_{l'_{i_1}}^{t+1}(i_1) b_{l'_{i_1+1}}^{t+1}(i_1+1), \\ and \ j < \delta^2 r 2^{r+1} \lambda_{t+1}, \ l'_{i_1+1} \in \mathbb{Z}_n \end{cases}$$

or

(77)
$$\begin{cases} \bar{D} \text{ is as in (76) and} \\ j > r\lambda_{t+1} - \delta^2 r 2^{r+1} \lambda_{t+1} \end{cases}$$

Moreover, there is a unique $s_0 \in \mathbb{Z}_n$ such that

$$(k'_0 \dots k'_{r-1} \mid l'_0 \dots l'_{i_1}) = (k_0 \dots k_{r-1} \mid l_0 \dots l_{i_1}) + s_0$$

if (76) holds and

$$(k'_1 \dots k'_{r-1} \mid l'_0 \dots l'_{i_1+1}) = (k_0 \dots k_{r-1} \mid l_0 \dots l_{i_1}) + s_0$$

if (77) holds.

Proof. The Proposition is an easy consequence of the Proposition 10 where t is taken instead of t + 1 ($\delta^2 < \frac{1}{r^{2}2^{2r+3}} < \frac{1}{3r^{2}2^{r+3}}$).

Given a block $A \subset \omega$ or ω_t , $A = \omega[l, l + |A| - 1]$ we define $A(\delta)$ as $A(\delta) =$ $\omega[l-\delta|A|, l+|A|+\delta|A|-1], \delta > 0$. The next Proposition says that if C is as in G1), G2), G3), or G4), there is a block $C' = b^t \times \widetilde{C}$ such that \widetilde{C} is as in B) and either \widetilde{C} contains \overline{C} or \overline{C} is contained in $\widetilde{C}(\delta_1)$, where $\delta_1 < \delta^2 r 2^{r+1}$.

1],

Proposition 14 Let $C = b^t \stackrel{r}{\times} \overline{C}$ and let \overline{C} be as in G1), G2), G3) or G4). Assume that

(78)
$$d(C, \omega_t[l, l+|C|-1]) < \frac{\delta^2}{3}.$$

Then

$$d(C', \omega_t[l', l' + |C'| - 1]) < \delta^2$$

where $C' = b^t \stackrel{r}{\sim} \widetilde{C}$, $\widetilde{C} \subset \omega_{t+1}$ and **g1**) $\widetilde{C} = b^{t+1}_{k'}(i_0 - 1)\overline{C_2}b^{t+1}_{k''}(i_1 + 1)$, $l' = l - l_1r$ (cf. (73), (74)), if G1) holds, **g2**) $\widetilde{C} = b^{t+1}_{k'}(i_0 - 1)\overline{C_2}$, $l' = l - l_1r$, if G2) holds, **g3**) $\widetilde{C} = \overline{C_2}b^{t+1}_{k''}(i_1 + 1)$, l' = l, if G3) holds, **g4**) $\widetilde{C} = \overline{C_2}$, l' = l, if G4) holds.

Proof. Consider the case G2). Then (11) and (78) imply $(C_2 = b^t \times \overline{C}_2)$

$$d(b^t \stackrel{\tau}{\times} \bar{C}_2, \omega_t[\bar{l}_2, \bar{l}_2 + |C_2| - 1]) < \delta^2$$

where $\bar{l_2} = l + |b^t \times \bar{C_1}|.$

It follows from the Proposition 13 that $\omega_t[\bar{l_2}, \bar{l_2} + |C_2| - 1]$ is of the form (75). Assume that the case (76) holds. Set

$$C_1 = C_1[0, |C_1| - j - 1],$$
$$\widetilde{D_1} = \omega_{t+1}[\frac{1}{\lambda_t}(l-j), \frac{1}{\lambda_t}(l-j) + |\widetilde{C_1}| - 1] \qquad (\text{see Figure 3}).$$

Figure 3

If follows from the Proposition 8 that

(79)
$$j \equiv (n - s_0)r4 \pmod{4nr}.$$

The fragment of ω_{t+1} from the left side of $b_{k'_0}^{t+1}(i_0)$ having the length λ_{t+1} is of a form $b_u^{t+1}(i_0-1)$ and either $u = k' + s_0$ or $u = k' + s_0 + 1$. Assume that $u = k' + s_0 + 1$. Then the Proposition 9 implies (80) $d(\widetilde{C}_1, \widetilde{D}_1) = 1$.

Let \bar{D}_1 denote the block $\omega_{t+1}[\frac{1}{\lambda_t}(l-j), \frac{1}{\lambda_t}(l-j) + |\bar{C}_1| - 1]$ (see Figure 3). Obviously we have

$$\frac{|C_1|}{|C|} d(\bar{C}_1, \bar{D}_1) \stackrel{(11),(8)}{\leq} d(C, \omega_t[l, l+|C|-1]) < \delta^2.$$

Further

$$\begin{split} \delta^{2} &> \frac{|\bar{C}_{1}|}{|C|} d(\bar{C}_{1}, \bar{D}_{1}) > \delta d(\bar{C}_{1}, \bar{D}_{1}) \stackrel{(11)}{\geq} \frac{|\tilde{C}_{1}|}{|\bar{C}_{1}|} \delta d(\widetilde{C}_{1}, \widetilde{D}_{1}) \stackrel{(80)}{=} \frac{|\bar{C}_{1}| - j}{|\bar{C}_{1}|} \delta \\ &= \delta (1 - \frac{j}{|C_{1}|}) \stackrel{(G2)}{\geq} \delta (1 - \frac{j}{\delta|\bar{C}|}) \stackrel{(76)}{\geq} \delta (1 - \frac{\delta^{2} r 2^{r+1} \lambda_{t+1}}{\delta|\bar{C}|}) \geq \delta (1 - \delta r 2^{r+1}), \\ \text{because } |\bar{C}| \geq \lambda_{t+1}. \end{split}$$

Thus

$$1 - \delta r 2^{r+1} < \delta$$

which is in contradiction with the inequality $\delta^2 < \frac{1}{r^2 2^{2r+3}}$. We have shown $u - k' = s_0 = k'_0 - k_0$.

Now, using (79) and the definition of $b_{k'}(i_0 - 1)$ and $b_u(i_0 - 1)$ we obtain $C[v] = \omega_t[l' + v]$ for each $v = 0, \ldots, |\bar{C}_1| - 1, l' = l - l_1 r$ (see (74)). This last equality implies g2). The proofs of the remaining cases are similar.

Proposition 15 Assume that $\mathcal{F} = \{C_1, \ldots, C_d\}, d \leq r - 1$, is a family of subblocks of ω_t such that

(81)
$$C_j = b^t \times \bar{C}_j \text{ and each } \bar{C}_j \text{ is as in } B$$

Let $\omega_t(\mathcal{F})$ be the maximal subsequence of ω_t that can be δ^2 -covered by the family \mathcal{F} in a disjoint way, $\delta^2 < \frac{1}{r^2 2^{2r+3}}$, and let $\bar{\omega}_t(\mathcal{F})$ be the complementary part of ω_t . Then it is an union of at least (r-d) blocks $b^t \stackrel{r}{\times} b^{t+1}(i_j)$, $j = 1, \ldots, r-d$.

Proof. Denote by \mathcal{F}_i the set of all blocks $C \in \mathcal{F}$ such that $\overline{C} \delta^2$ -covers a subblock of ω_{t+1} containing one of the form

$$b_1^{t+1}(i)b^{t+1}(i+1), \ i=0,\ldots,r-2$$

and by \mathcal{F}_{r-1} those C for which $\overline{C} \ \delta^2$ -covers a block containing $b^{t+1}(r-1)b^{t+1}(0)$. We show that $\mathcal{F}_i \cap \mathcal{F}_j = \emptyset$ whenever $i \neq j$. Take $C \in \mathcal{F}_i, D \in \mathcal{F}_j$ and let $\overline{C}, \overline{D}$ be the blocks defined by (81), \overline{C} as in B) and

$$\bar{D} = b_{k'_{i'_0}}^{t+1}(i'_0) \dots b_{k'_{r-1}}^{t+1}(r-1) \mid b_{l'_0}^{t+1}(0) \dots b_{l'_{i'_1}}^{t+1}(i'_1).$$

If $(i_0 \dots (r-1) \mid 0 \dots i_1) \neq (i'_0 \dots (r-1) \mid 0 \dots i'_1)$ then $C \neq D$. If $(i_0 \dots (r-1) \mid 0 \dots i_1) = (i'_0 \dots (r-1) \mid 0 \dots i'_1)$ then using the Proposition 13 we obtain

$$(k_{i_0} \dots k_{r-1} \mid l_0 \dots l_{i_1}) = (k'_{i_0} \dots k'_{r-1} \mid l'_0 \dots l'_{i_1}) + s_0$$

for some $s_0 \in \mathbb{Z}_n$. The last condition is impossible since $i \neq j$. The Proposition follows because $\#\{\mathcal{F}_i; 0 \leq i < r\} = r$.

Theorem 4 $r(T_{\varphi}) = r$.

Proof. According to the Proposition 12 it remains to show that $r(T_{\varphi}) > r - 1$. Let $\frac{\delta^2}{9} < \frac{1}{r^2 2^{2r+3}}$ and let A_1, \ldots, A_x be blocks occurring in ω , $|A_i| \ge p_{t_0}$ and t_0 satisfies $\frac{r}{\lambda_t} < \delta^2 r 2^{r+1}$, if $t \ge t_0$, $x \le r-1$. For each $u = 1, \ldots, x$ there exists an unique t = t(u) such that A_u contains at least one t-symbol and does not contain any (t+1)-symbol. Then A_u has a form

(82)
$$A_u = \widetilde{E_1} (B^{t-1} \times C_u) \widetilde{E_2},$$

where $C_u \subset \omega_t$ is as in 4.2, $|C_u| = qr$, $q = q(u) \ge 1$, E_1 is a right-side part of a *t*-symbol and E_2 is a left-side part of a *t*-symbol. We divide the set $\{t(1), \ldots, t(x)\}$ by arithmetic order. More precisely, we put

$$\tau_1 = \max\{t(1), \dots, t(x)\}, T_1 = \{u; t(u) = \tau_1\}, d_1 = \#T_1$$

Next we define

$$\tau_2 = \max\{t(u); u \notin T_1\}, \ T_2 = \{u; t(u) = \tau_2\}, \ d_2 = \#T_2.$$

Similarly we define sets T_3, \ldots, T_v , numbers τ_3, \ldots, τ_v and d_3, \ldots, d_v . We have

$$\tau_1 > \ldots > \tau_v, \ d_1 + \ldots + d_v = x$$

Let

$$\mathcal{A}_p = \{A_u; u \in T_p\}, \ p = 1, \dots, v$$

The families $\mathcal{A}_1, \ldots, \mathcal{A}_v$ are pairwise disjoint and $\bigcup_{p=1}^v \mathcal{A}_p = \{A_1, \ldots, A_x\}$. Consider the family \mathcal{A}_1 . Assume that

$$\mathcal{A}_1 = \{A_1, \ldots, A_{d_1}\}.$$

Then

$$C_u = b^t \stackrel{r}{\times} \bar{C_u}$$

and

$$\bar{C}_u \subset \omega_{t+1}, \ u \in T_1, \ t = \tau_1,$$

If $d(A_u, \omega[\tilde{l}, \tilde{l} + |A_u| - 1]) < \frac{\delta^2}{9}$ then by (11), (8),

(83)
$$d(B^{t-1} \stackrel{r}{\times} C_u, \omega[l, l+m_{t-1}|C_u|-1]) < \frac{\delta^2}{3}$$

where $l = \tilde{l} + |\tilde{E}_1|$.

According to the Proposition 11

(84)
$$d(C_u, \omega_t[l', l' + |C_u| - 1]) < \frac{\delta^2}{3}$$

for some $l' \in \mathbb{Z}$ and (85)

$$|l - p_t l'| < \frac{1}{3} \delta^2 r 2^{r+1} p_t.$$

We can write

$$\bar{C}_{u} = \bar{C}_{u}{}^{(1)} \bar{C}_{u}{}^{(2)} \bar{C}_{u}{}^{(3)}$$

according to (73).

We distinguish among the blocks A_1, \ldots, A_{d_1} three types $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$, as follows;

$$A_u \in \mathcal{F}_1$$
 if C_u is as in A) or G4),
 $A_u \in \mathcal{F}_2$ if C_u is as in G1), G2), or G3)
 $A_u \in \mathcal{F}_3$ if C_u is as in B).

Let $d_{11} = \# \mathcal{F}_1$, $d_{12} = \# \mathcal{F}_2$, $d_{13} = \# \mathcal{F}_3$. We have

2

$$d_{11} + d_{12} + d_{13} = d_1.$$

Let $\omega(A_1, \ldots, A_{d_1})$ be a subsequence of ω that is $\frac{\delta^2}{9}$ -covered by the blocks A_1, \ldots, A_{d_1} in a disjoint way. By $\omega(\mathcal{F}_i)$, i = 1, 2, 3, we denote the subsequence of $\omega \frac{\delta^2}{9}$ -covered in a disjoint way by the families \mathcal{F}_i . Of course, $\omega(A_1, \ldots, A_{d_1}) \subset \omega(\mathcal{F}_1) \cup \omega(\mathcal{F}_2) \cup \omega(\mathcal{F}_3)$. Denoting by $\bar{\omega}(A_1,\ldots,A_{d_1})$, $\bar{\omega}(\mathcal{F}_i)$ the complementary parts of $\omega(A_1,\ldots,A_{d_1})$, $\omega(\mathcal{F}_i)$, i =1, 2, 3, respectively, we have

$$\bar{\omega}(A_1,\ldots,A_{d_1}) \supset \bar{\omega}(\mathcal{F}_1) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_3).$$

According to (83),(84),(85) and the Proposition 15 we have that $\bar{\omega}(\mathcal{F}_3)$ is an union of at least

(86)
$$(r-d_{13})$$
 blocks $E(\delta_1)$,

where

(87)
$$\begin{cases} E = B^t \stackrel{r}{\times} b^{t+1}(i_j), \quad j = 1, \dots, r - d_{13}, \text{ and} \\ \delta_1 \le 2\delta^2 r 2^{r+1}, \end{cases}$$

because of $\frac{|\widetilde{E}_1|}{|A_u|} \stackrel{(84)}{\leq} \frac{p_t}{m_{t+1}} = \frac{r}{\lambda_{t+1}} < \frac{1}{2}\delta_1$, and $\frac{|\widetilde{E}_2|}{|A_u|} < \frac{1}{2}\delta_1$. Consider the family \mathcal{F}_2 . Let $A_u \in \mathcal{F}_2$. If $A_u = \frac{\delta^2}{9}$ -covers a fragment I_u of ω then (83) and (84) imply that $\bar{C}_u \frac{\delta^2}{3}$ -covers a fragment $I_u = I_u(t)$ of ω_{t+1} and (85) implies

$$I_u \subset (B^t \times I_u(t))(\delta_1).$$

It follows from the Proposition 14 that there is $A_{\bar{u}}$ of a form as in \mathcal{F}_3 such that $\widetilde{C}_{\bar{u}} = \frac{\delta^2}{3}$. covers another fragment $I_{\bar{u}}(t)$ of ω_{t+1} such that

$$I_u(t) \subset I_{\bar{u}}(t)(\delta).$$

Applying the Proposition 15 to the family $\{A_{\bar{u}}\}\$ we obtain that $\bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2)$ is an union of at least $(r - d_{13} - d_{12})$ blocks $E(\delta_2)$, E is as (87) and $\delta_2 = \max(\delta, \delta_1)$. Each block $E(\delta_2) \in \bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2)$ is an union of at least $(r - d_{13} - d_{12})$ blocks of

the form $B^t \stackrel{r}{\times} e_k^{(s)}$, $k \in \mathbb{Z}_n$, $s \in S$, $\#S = r - d_{13} - d_{12}$. Using the same arguments as before we get that

(88)
$$\begin{cases} \bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_1) \text{ is an union} \\ \text{ of at least } (r - d_{13} - d_{12} - d_{11}) \text{ blocks of the form } B^{t-1} \stackrel{r}{\times} e_k^{(s)}, \\ s \in S_1, \ \#S_1 = r - d_{13} - d_{12} - d_{11}. \end{cases}$$

Denoting $P(\omega_1, \omega)$ the density of a subsequence ω_1 in ω and using (69),(86), (88) we have

$$P(\bar{\omega}(A_1,\ldots,A_{d_1}),\omega) \ge P(\bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_1),\omega)$$

$$\geq (1 - \frac{d_{13} + d_{12}}{r})(1 - \frac{d_{11}}{r})(\frac{1}{4nr})^2(1 - \delta_2)$$

 $\geq (1 - \frac{1}{r})^2 (\frac{1}{4nr})^2 (1 - \delta_2) \geq (1 - \frac{1}{r})^2 (\frac{1}{4nr})^2 \frac{1}{2}.$

If $T_1 \neq \{1, \ldots, x\}$ then we repeat the above reasoning to the subsequence $\bar{\omega}(\mathcal{F}_3) \cap \bar{\omega}(\mathcal{F}_2) \cap \bar{\omega}(\mathcal{F}_1)$ and $t = \tau_2$, and so on. As a consequence we get

$$P(\bar{\omega}(A_1,\ldots,A_x),\omega) \ge (1-\frac{1}{r})^{2r}\frac{1}{2^r}(\frac{1}{4nr})^{2r}.$$

This implies $r(T_{\varphi}) > r - 1$. Thus we have shown $r(T_{\varphi}) = r$.

4.4 $r(T_{\varphi}) = r$: the case 3.1.

To prove that $r(T_{\varphi}) = r$ in the case 3.1 we can repeat the same arguments an in 4.3. Similarly as in the Theorem 4 we consider blocks A_u , $u = 1, \ldots, x$, $x \leq r - 1$, and A_u are as in (82), $C_u = b^t \times \overline{C}_u$ but \overline{C}_u are as in A), B') and G1), G2), G3), G4).

As an analogue of the Propositions 13-15 and Theorem 4 we obtain

Proposition 13' Assume that C is as in B') and let $d(C, D) < \delta^2, D \subset \omega_t$. Then D has a form (75), and $\overline{D} = b_{k'_{i_0}}(i_0)..b_{k'_{r-1}}(r-1) | b_{u'_0}(0)..b_{u'_{r-1}}(r-1) | b'_{v_0}(0)..b_{v'_{r-1}}(r-1) | b_{l'_0}(0)..b_{l'_{i_1}}(i_1), b_k(i) = b_k^{t+1}(i), and j satisfies either (76) or (77).$

Proposition 14' Let C be as in the Proposition 14, \overline{C} is as in (73) and \overline{C}_2 is as in B'). Then we get g1),g2), g3) or g4).

The proofs of the Propositions 13' and 14' are similar to the proofs of the Propositions 13 and 14.

Proposition 15' Let $\mathcal{F} = \{C_1, \ldots, C_d\}, d \leq r - 1, C_j = b^t \stackrel{r}{\times} \overline{C}, and C_j are as in B').$ Then we have the same thesis as in the Proposition 15.

Proof. Let $\mathcal{F}_{i,k}$, $i = 0, \ldots, r-2$, $k \in \mathbb{Z}_n$, be the set of all blocks $C \in \mathcal{F}$ such that \overline{C} $(C = b^t \stackrel{r}{\times} \overline{C}) \delta^2$ -covers a subblock of ω_{t+1} containing one of the form $b_k^{t+1}(i)b_{k+1}^{t+1}(i+1)$. By $\mathcal{F}_{r-1,k}^{(1)}, \mathcal{F}_{r-1,k}^{(2)}$ we denote those $C \in \mathcal{F}$ such that \overline{C} does so for the pairs $b_k^{t+1}(r-1)b_k^{t+1}(0)$ or $b_k^{t+1}(r-1)b_{k+1}^{t+1}(0)$ respectively.

Using the Propositions 3 and 7 we get that

(89) $\begin{cases} \text{if } C \in \mathcal{F}_{i,k} \text{ then } \bar{C} \, \delta^2 \text{-covers } (\text{up to } \delta r^2 2^{r+3} \lambda_{t+1}) \text{ only those} \\ \text{fragments of } \omega_{t+1} \text{ containing blocks of the form} \\ (89') \quad b^{t+1} \stackrel{r}{\times} \bar{e}_k(i+1) \text{ or } b^{t+1} \stackrel{r}{\times} \bar{e}_{k+4}(i), \text{ if } n \geq 3, \\ and \\ (89'') \quad b^{t+1} \stackrel{r}{\times} \bar{e}_k(i+1) \text{ if } n = 2, \end{cases}$

whenever $i = 0, \ldots, r - 2, k \in \mathbb{Z}_n$. Using the Propositions 4 and 7 we get that

(90)
$$\begin{cases} \text{if } C \in \mathcal{F}_{r-1,k}^{(1)} \text{ then } \bar{C} \, \delta^2 \text{-covers only those fragments} \\ \text{of } \omega_{t+1} \text{ containing blocks of the form} \\ (90') \quad b_k^{t+1}(r-1)b_k^{t+1}(0) \text{ or } b_l^{t+1}(r-1)b_{l+1}^{t+1}(0), \\ l \text{ satisfies (54)}, \end{cases}$$

and

(91)
$$\begin{cases} \text{if } C \in \mathcal{F}_{r-1,k}^{(2)} \text{ then } \bar{C} \, \delta^2 \text{-covers only those fragments} \\ \text{of } \omega_{t+1} \text{ containing blocks of the form} \\ (91') \quad b_k^{t+1}(r-1)b_{k+1}^{t+1}(0) \text{ or } b_l^{t+1}(r-1)b_l^{t+1}(0), \\ l \text{ satisfies (54).} \end{cases}$$

Now notice that each two blocks $b^{t+1} \stackrel{r}{\times} e_k^{(i)}$ and $b^{t+1} \stackrel{r}{\times} e_{k'}^{(i)}$, $k' \in \mathbb{Z}_n$, $k \neq k'$, appearing in ω_{t+1} are separated by at least three blocks of the form $b^{t+1} \stackrel{r}{\times} e_{k+1}$. This, (89) and the condition |E| < 4r (see B')) imply that $\mathcal{F}_{i,k} \cap \mathcal{F}_{i,k'} = \emptyset$, if $k \neq k'$, $i = 0, \ldots, r-2$. Similarly $\mathcal{F}_{r-1,k}^{(1)} \cap \mathcal{F}_{r-1,k'}^{(1)} = \emptyset$ and $\mathcal{F}_{r-1,k}^{(2)} \cap \mathcal{F}_{r-1,k'}^{(2)} = \emptyset$, if $k \neq k'$.

Further (89) implies that if $C \in \mathcal{F}_{i,k} \cap \mathcal{F}_{i',k'}$ then i' = i + 1, k' = k + 4 if $n \geq 3$ ((89')) and i' = i, k' = k if n = 2 ((89")), $i = 0, \ldots, r - 2$. (90) implies that if $C \in \mathcal{F}_{r-1,k}^{(1)} \cap \mathcal{F}_{r-1,k'}^{(2)}$ then k' = l, l satisfying (54). Combining the above arguments we get that there is at least $\frac{rn}{2} - d$ fragments of ω_{t+1} of the form (89') and (90) or (91) that are not covered by the family \mathcal{F} . The Proposition follows because $\frac{rn}{2} \geq r$.

Theorem 4' $r(T_{\varphi}) = r$.

Proof. We repeat the same reasoning as in the proof of the Theorem 4 using blocks A_1, \ldots, A_x of the form (82) with $q \ge 3$. We use the Proposition 7 instead of the Proposition 11 and the Propositions 14' and 15' instead of the Propositions 14 and 15. The using (67) instead of (68) we get

$$P(\bar{\omega}(A_1,\ldots,A_x),\omega) \ge (1-\frac{1}{r})^{2r} \frac{1}{2^r} (\frac{1}{rn2^{r+1}})^{2r},$$

what implies $r(T_{\varphi}) > r - 1$ and by Proposition 12 we have $r(T_{\varphi}) = r$.

5 Pairs (r, ∞) or (∞, m) .

In this part we construct group extensions $(X \times G, T_{\varphi})$ such that $r(T_{\varphi}) = r$, $q(T_{\varphi}) = \infty$, $2 \le r < \infty$ or $r(T_{\varphi}) = \infty$, $q(T_{\varphi}) = m$, $1 \le m < \infty$.

5.1 The case (r, ∞) .

Take a sequence $\{s_t\}_{t=0}^{\infty}$, $s_{t+1} = \mu_{t+1}s_t$, $s_0 = \mu_0$, $\mu_t \ge 2$ for $t \ge 0$ and let G be the group of $\{s_t\}$ -adic integers. Let $e = 1 + 0s_1 + 0p_2 + \dots$ The set of all $\{s_t\}$ -adic rational integers of G coı̈ncides with the set $\{e_n, n \in Z\}$, where $e_n = ne$. Similarly as in the case 3.1 we define an adding machine (X, \mathcal{B}, μ, T) and a cocycle $\varphi : X \longrightarrow G$. To do this we define blocks $F^{(0)}, F^{(1)}, \dots, F^{(r-1)}$ $(r \ge 2$ is given) over G. Put

Fut $\begin{aligned}
r(2^{i+1}-1) & r \\
F^{(i)}(t) &= F^{(i)} = \underbrace{0 \dots 0}_{0 \dots 0} \underbrace{0 \dots 0e0 \dots 0}_{0 \dots 0e0 \dots 0}, \quad i = 0, \dots, r-1 \\
H^{(i)} &= F^{(i)}F_e^{(i)} \dots F_{(s_t-1)e}^{(i)}. \\
\text{Then } |H^{(i)}| &= s_t r 2^{t+1}. \text{ Next define } b^t(0), \dots, b^t(r-1) \text{ as in 3.1 and} \\
b^t &= b^t(0) \dots b^t(r-1), \ t \ge 0. \\
\text{We have}
\end{aligned}$

$$\lambda_t = |b^t(i)| = s_t r 2^{r+t+1}, \ i = 0, \dots, r-1$$

and

$$|b^t| = s_t r^2 2^{r+t+1}$$

Then we define the blocks B^t , $t \ge 0$ by (14). We have $p_t = |B^t| = s_0 \dots s_t r^{2t} 2^{r+1} (2^{t+1} - 1)$. Let (X, \mathcal{B}, μ, T) be the $\{p_t\}$ -adic adding machine and define a cocycle $\varphi : X \longrightarrow G$ by (18).

Theorem 5 $r(T\varphi) = r$ and $q(T_{\varphi}) = \infty$

Proof. Let $\Pi_t : G \longrightarrow Z/s_t Z$ be the natural group homomophism. We can define cocycles $\varphi_t : X \longrightarrow Z/s_t Z$ by $\varphi_t = \varphi \circ \Pi_t$. It is evident that φ_t is a *r*-Toeplitz cocycle as in 3.1 defined by the blocks $\Pi_t(B_k), u \ge 0$. According to Theorems 2 and 4 we have $r(T_{\varphi_t}) = r$ and $q(T_{\varphi_t}) = s_t$. It follows from the definitions of φ and φ_t that the dynamical system $(X \times G, T_{\varphi})$ is the inverse limit of the systems $(X \times Z/s_t Z, T_{\varphi_t})$. Then from the definition of the rank we obtain $r(T_{\varphi}) = r$. It is proved in Theorem 2 that $\sigma_{je} \notin wcl\{T_{\varphi_t}^n, n \in Z\}$ if $j = 0, \ldots, s_t - 1, t \ge 0$. This means that $\sigma_{je} \notin wcl\{T_{\varphi}^n, n \in Z\}$ for every $j \in Z, j \neq 0$ which implies $q(T_{\varphi}) = \infty$.

5.2 The case (∞, m) .

First consider the case $m \ge 2$. Let $r_t = 2^{t+1}$, $t \ge 0$ and define blocks $F^{(i)} = F^{(i)}(t)$ over G = Z/mZ, $i = 0, \ldots, r_{r+1} - 1$ as follows:

$$F^{(i)} = \underbrace{\overbrace{0\dots0}^{2^{i+1}r_t} \overbrace{0\dots0}^{r_{t+1}} 0\dots0}_{i+1} \cdots 0,$$
$$H^{(i)} = F_0^{(i)}F_1^{(i)}\dots F_{m-1}^{(i)} \quad i = 0,\dots,r_{t+1} - 1$$

1.

1.

We have $|H^{(i)}| = mr_t 2^{i+3}$. Next define $b^t(0), \ldots, b^t(r_{t+1}-1), b^t, B^t$ by putting

$$b^{t}(i) = \overbrace{H^{(i)}H^{(i)}\dots H^{(i)}}^{x}, x = 2^{t+r_{t+1}-i-1}$$
$$b^{t} = b^{t}(0)b^{t}(1)\dots b^{t}(r_{t+1}-1), \text{ and}$$
$$B^{t} = b^{0} \stackrel{r_{0}}{\times} b^{1} \stackrel{r_{1}}{\times} \dots \stackrel{r_{i-1}}{\times} b^{t}.$$

Then $\lambda_t = |b^t(i)| = m2^{2t+\rho+2}, \rho = r_{t+1}$ and $p_t = m_t r_{t+1}, m_t = \lambda_0 \dots \lambda_t$. We define a cocycle $\varphi: X \longrightarrow G$ by

$$\varphi(x) = B^t[j+1] - b^t[j]$$

if $x \in D_j^t$ except if $j = m_t - 1, \ldots, p_t - 1$. The cocycle φ is constant on the levels D_j^t except of r_{t+1} consecutive levels.

In a similar way we construct a cocycle φ if m = 1. Take n as in the case 3.2 and define

$$F^{(i)}(t) = F^{(i)} = \underbrace{0 \dots 0}_{i+1} \underbrace{0 \dots 0}_{i+1} \underbrace{1 \dots 0}_{i+1} \\ H^{(i)} = F_0^{(i)} F_1^{(i)} \dots F_{n-1}^{(i)}, \quad i = 0, 1, \dots, r_{t+1} - 1$$

The next steps of the definition φ are the same as in the case $m \geq 2$.

Theorem 6 $r(T_{\varphi}) = \infty, q(T_{\varphi}) = m$ and $wcl\{T_{\varphi}^n, n \in z\}$ is uncountable.

Proof. For the dynamical system $(X \times G, T_{\varphi})$ we can use the same arguments as in the parts 3 and 4 taking r_t instead of r. The Theorems 2,3 and 3' are valid. To estimate the rank of T_{φ} we use the shift representations $(\Omega \omega, T_{\sigma})$ of $(X \times G, T_{\varphi})$ where $\omega = b^0 \stackrel{r_0}{\times} b^1 \stackrel{r_1}{\times} \dots$ Repeating the proof of the Theorem 4 and 4' we get $r(T_{\varphi}) > r_t - 1$ for every $t \ge 0$. Thus $r(T_{\varphi}) = \infty$.

References

[BuKwSi] - W.Bułatek, J.Kwiatkowski, A.Siemaszko, "Finite rank transformations and weak closure Theorem", preprint 1995.

[ChKaMFRa] - G.Christol, T. Kamae, M. Mendès France & G. Rauzy, "Suites algébriques, automates et substitutions", Bull.S.M.F. 108 (1980),401-419.

[FeKw] - S.Ferenczi, J.Kwiatkowski, "Rank and spectral multiplicity", Studia Math. 102(2) 1992, 121-144.

[FiKw] - I.Filipowicz, J.Kwiatkowski, "Rank, covering number and simple spectrum" - preprint.

[GoKwLeLi] - G. Goodson, J. Kwiatkowski, P. Liardet & M. Lemanczyk, "On the multiplicity function of ergodic group extensions of rotations", Studia Math. 102 (1992), 157-174.

[Kin1] - J.King, "The commutant is the weak closure of the powers, for rank-1 transformations", Erg. Th. and Dyn. Syst. 6(1986), 363-385.

[Kin2] - J.King, "Joining - rank and the structure of finite rank mixing transformations", Journal d'Analyse Mathématique, vol. 51(1988), 182-227.

[Lem] - M.Lemańczyk, "Toeplit
z \mathbb{Z}_2 -extensions", Ann. I. H. P. 24(1988), 1-43.

[LeLi] - M.Lemańczyk, P.Liardet, "Coalescence of Anzai skew product", unpublished preprint.

[LeLiTh] - M.Lemańczyk, P.Liardet, J.P.Thouvenot, "Coalescence of circle extensions of measure-preserving transformations", Erg. Th. and Dyn. Syst. 12(1992), 769-789.

[New] - D.Newton, "On canonical factors of ergodic dynamical systems", J. London Math. Soc. 2, 19(1979), 129-136.

[Par] - W.Parry, "Compact abelian group extensions of discrete dynamical systems", Z. Wahr. Verv. Geb. 13(1969), 95-113.

[Roj] - T.Rojek, "On metric isomorphism of Morse dynamical systems", Studia Math. LXXXIV (1986), 247-267.