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Abstract. For a sequence (Pn) of measurable partitions of a continuous probability space (Ω,B, µ),
which refines to point partition E, and given (Γ, C, ν) such another space, we introduce a renor-

malization process. It is a sequence (tn : Ω → Γ) of random variables such that for A ∈ C, if

Pn = {Pn,i : i ∈ ∆n}, then µ(Pn,i ∩ t−1
n (A))

‹
µ(Pn,i) = ν(A). We derive criterions for that µ-a.s.,

1
N

PN−1
n=0 1A(tn(x)) → ν(A), which also give a speed of convergence when applicable. Several ex-

amples or counterexamples illustrate the phenomenon and its analysis. Links to “Cantor-Bernstein”

type lemmas, a.s. convergence in Lp spaces, and central limit theorems are also indicated.

1. Introduction

The renormalization of number systems, though not clearly conceptualised, was studied in
[Sc, Chap. 11], [La] and [LaTh] for number systems of the interval [0, 1]. The aim of this paper
is to build a general formalism for it, and the related notion of adapted barycentrical positions.
We shall also include some new directions of application of these concepts, namely to ”Cantor-
Bernstein” type lemmas, central limit theorems or a.s. convergence in Lp spaces. So let us start
with some notations and definitions.

Both (Ω,B, µ) and (Γ, C, ν) shall denote continuous probability spaces. By an algorithm on
(Ω,B, µ) we mean a quadruple T = (Ω,B, µ,P) where P = (Pn) is a refining sequence of mea-
surable partitions of Ω, such that

∨
n Pn = E , the point partition. If Pn = {Pn,i : i ∈ ∆n}, we

require each Pn,i to have positive measure. Such algorithms may be thought of as number sys-
tems in the classical sense (dyadic or continued fraction expansions, etc, with interval partitions)
(cf. [Sc] for various examples).

Given such T , µ-a.s., for x ∈ Ω, there exists a unique sequence (in(x)) ∈
∏

∆n such that
x ∈ Pn,in(x), for all n. The sequence (in(x)) is the digital expansion of x.

The second main objects we shall deal with are, associated to given T and (Γ, C, ν), the
sequences of adapted barycentrical positions. These are sequences (tn : Ω → Γ) of a.s. onto
random variables satisfying, for each n,

µ(Pn,i ∩ t−1
n (A))

/
µ(Pn,i) = ν(A), A ∈ C, i ∈ ∆n. (1.1)

The set of such sequences, given T , shall be denoted by ABP (T ).
When both (Ω,B, µ) and (Γ, C, ν) are continuous Lebesgue probability spaces [Ro] then obvi-

ously ABP (T ) 6= ∅.
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Renormalizing the algorithm T consists in choosing a “standard screen” (Γ, C, ν) and a se-
quence (tn) in ABP (T ). Then given a point x in Ω, we obtain a sequence (tn(x)) in Γ (see
Figure 1); the purpose of this paper is the investigation of its “uniform distribution” in Γ; more
precisely, given A ∈ C, is it true or not that

µ− a.e., 1
N

N−1∑
n=0

1A(tn(x))→ ν(A)? (1.2)

This question is not completely new, though it was never stated but in the restricted context
of number systems of the interval [LaTh], [Sc, Chap. 11]. The paper is organized as follows.

In Section 2, we present the general preliminary lemmas or definitions, and obtain in Theorem
2.1 the key tool we shall use in latter sections when dealing with specified algorithms. In Section
3 we extend some previous results for number systems of the interval. Then Theorem 3.2. and
Counter-example 3.1. illustrate how far Eq. (1.2) is true in general. We also point out some
elementary connections with dynamical systems in Remark 3.1 [Pa], [Wa].

In Section 4 we show what may happen and be computed when renormalization is processed
on number systems of [0, 1]2. And Section 5 gives some hints towards obtaining via renormal-
izations “Cantor-Bernstein” lemmas, central limit theorems or a.s. convergence along adapted
barycentrical positions in Lp spaces.

2. Preliminary results and notations

Hereafter, inclusions or equalities among sets are understood mod 0. Let (tn : Ω → Γ) ∈
ABP (T ). Then whenever A ∈ C, Eq. (1.1) obviously implies that

µ(t−1
n (A)) = ν(A). (2.1)

Definition 2.1. For m ≥ 0, and E ∈ B, let Pm(E) = {Pm,i ∈ Pm : Pm,i ⊂ E}, and Pm(∂E) =
{Pm,i ∈ Pm : µ(Pm,i ∩ E)µ(Pm,i ∩ Ec) 6= 0}. Then put

(i) Intm(E) =
⋃
Pm(E)

Pm,j ,

(ii) ∂m(E) =
⋃

Pm(∂E)

Pm,i.

Chosen A ∈ C, let En = t−1
n (A), n ≥ 0. Then for m ≥ 1, it follows from Definition 2.1 that

En ∩ En+m = (Intn+m(En) ∩ En+m) ∪ (∂n+m(En) ∩ En ∩ En+m).
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With Eqs. (2.1) and (1.1) we obtainµ(Intn+m(En) ∩ En+m) = ν(A)µ(Intn+m(En)),

µ(∂n+m(En) ∩ En ∩ En+m) ≤ µ(∂n+m(En) ∩ En+m) = ν(A)µ(∂n+m(En)),

It follows that µ(En∩En+m) ≤ ν(A) (µ(Intn+m(En)) + µ(∂n+m(En))). Since µ(En) = µ(En+m)
= ν(A), Intn+m(En) ⊆ Intn+m+1(En) ⊆ En, and En\Intn+m(En) ⊆ ∂n+m+1(En) ⊆ ∂n+m(En),
we see that if

αn,m = ν(A)(µ(∂n+m(En))− µ(En \ Intn+m(En))),

then αn,m ≥ αn,m+1 ≥ 0 and also αn,m ≤ ν(A)µ(∂n+m(En)). Hence we have proved the mixing
relation

Lemma 2.1. For n ≥ 0, m ≥ 1, µ(En ∩ En+m)− µ(En)µ(En+m) ≤ αn,m, and (i) αn,m ≤ ν(A)µ(∂n+m(En)),

(ii) αn,m ≥ αn,m+1 ≥ 0.

Theorem 2.1. Define, for integers 0 ≤ p < q, r ≥ 1, 0 ≤ s ≤ r, and t,

(i) Lr(s) = {I =]t2s, (t+ 1)2s] : I ⊆]0, 2r]};
(ii) Lr = ∪0≤s≤rLr(s);

(iii) γ(p, q) =
∑
p<i≤q

(∑
0≤k≤q−i αi,k

)
;

(iv) Ψ(r) =
∑

]u,v]∈Lr

γ(u, v).

Then for any ε > 0, µ-a.s., if 2r−1 < N ≤ 2r,∣∣∣∣∣ 1
N

N∑
i=1

1Ei
(x)− ν(A)

∣∣∣∣∣ = O(r1+ε

√
Ψ(r)
2r

).

Proof. Let us define A(p, q, x) =
∑
p<i≤q 1Ei

(x); A(q, x) = A(0, q, x), φ(p, q) = ν(A)(q −
p); φ(q) = φ(0, q) (= qν(A)). Then since φ(p, q) =

∫
Ω
A(p, q, x)dµ(x), using (iii), we may

compute, with Lemma 2.1,∫
Ω

(A(p, q, x)− φ(p, q))2dµ(x) =
∑

p<i,j≤q

µ(Ei ∩ Ej)− µ(Ei)µ(Ej)

≤ 2

 ∑
p<i≤j≤q

µ(Ei ∩ Ej)− µ(Ei)µ(Ej)

 ≤ 2γ(p, q).

Let Zr(x) =
∑

]u,v]∈Lr
(A(u, v, x) − φ(u, v))2 (cf. (ii)). With (iv) and the last inequality above

we see that
∫

Ω
Zr(x)dµ(x) ≤ 2Ψ(r). Hence if ε > 0,∑

r≥1

∫
Ω

Zr(x)
/

(r1+εΨ(r))dµ(x) <∞,

from which it follows by the monotone convergence theorem that µ-a.s., Zr(x) = O(r1+εΨ(r)).
Let N be such that 2r−1 < N ≤ 2r; then ]0, N ] can be partitioned with at most r+ 1 intervals

from Lr ((i), (ii)); call Lr(N) the corresponding family; #Lr(N) ≤ r+1. Since A(N, x)−φ(N) =∑
]u,v]∈Lr(N)A(u, v, x)− φ(u, v), using Cauchy’s inequality ((x1 + . . . xn)2 ≤ n(x2

1 + . . . x2
n)), we

obtain (A(N, x)− φ(N))2 = O(rZr(x)) = O(r2+εΨ(r)). The conclusion follows. �
The first corollary shows that under particular assumptions on the αn,m’s, we find the same

estimation in Theorem 2.1 as the one appearing in [Ph]:
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Corollary 2.1. If αn,m ≤ cm and
∑
cm = S <∞, then∣∣∣∣∣ 1

N

N∑
i=1

1Ei(x)− ν(A)

∣∣∣∣∣ = O(
log

3
2 +εN√
N

).

Proof. With the assumptions made on the αn,m’s, we have γ(0, 2r) ≤ S2r, and since Ψ(r) ≤

(r + 1)γ(0, 2r), when 2r−1 < N ≤ 2r, we obviously have r1+ε

√
Ψ(r)

2r = O( log
3
2 +ε N√
N

). �

The second corollary shows that the αn,m’s may go rather slowly to 0 and still r1+ε

√
Ψ(r)

2r → 0
with r →∞:

Corollary 2.2. If αn,m ≤ βm = o
(

1
log3+ε(m)

)
, then

1
N

N∑
i=1

1Ei(x) −−−−−→
N→∞

ν(A) µ− a.s..

Proof. It can be shown, using Bertrand’s integrals and similar estimations as in the proof of

Corollary 2.1, that as r →∞, the assumptions on the αn,m’s imply r1+ε

√
Ψ(r)

2r → 0. �

3. Renormalization of number systems of the interval

For number systems on [0, 1] [LaTh] we let, if not specified, (Ω,B, µ) = ([0, 1],B,m) where
m is Lebesgue measure and B the associated Borel σ-algebra. We also assume any Pn,i to be
a subinterval, not specifying inclusion or exclusion of the associated endpoints; this way set
Pn,i = (an,i, bn,i). In [LaTh] the m-a.s. uniform or complete uniform distributions mod 1 [KuNi]

of the sequence (tn(x)) =
(

x−an,in(x)

bn,in(x)−an,in(x)

)
is studied. The following result, proved as in [LaTh],

using Corollary 2.1., strengthens slightly [LaTh, Thm 3.1.];

Theorem 3.1. Let tn(x) = x−an,in(x)

bn,in(x)−an,in(x)
or tn(x) = bn,in(x)−x

bn,in(x)−an,in(x)
, n ≥ 0. If there is a q < 1

such that whenever (an+1,j , bn+1,j) ⊆ (an,i, bn,i), (bn+1,j−an+1,j)
/

(bn,i−an,i) < q, then m-a.s.,
for any d ∈]0, 1], ε > 0, ∣∣∣∣∣ 1

N

N∑
i=1

1[0,d)(tn(x))− d

∣∣∣∣∣ = O(
log

3
2 +εN√
N

).

Let us now point out that if αn,m ≥ c > 0, then Ψ(r) ≥ 22r, and hence r1+ε

√
Ψ(r)

2r does not

go to 0 as r → ∞. Therefore the question of weither r1+ε

√
Ψ(r)

2r → 0 for any of the renormal-
ization processes we define arises. This question may be settled as follows; can mixing hold (i.e.
αn,m →m→∞ 0) while ”uniform distribution” (cf. (1.2)) does not?

We shall answer this question by two steps; first in Theorem 3.2. give general conditions
for mixing to hold, and next in Counter-example 3.1. give a renormalization for which those
conditions hold while Eq. (1.2) does not.

Theorem 3.2. Suppose Ω is a topological space and B is its Borel σ-algebra (eventually µ-
completed). Assume the following conditions hold (when E ⊆ Ω, Fr(E) denotes its topological
boundary): 

(i) µ(O) > 0 if O is open and non-empty;
(ii) µ(Fr(Pn,i)) = 0, i ∈ ∆n, n ≥ 0;
(iii) V (P) := {∪j∈JPn,j : ∅ 6= J ⊆ ∆n, n ≥ 0}

is a basis of neighbourhoods for all points.
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Then if E ∈ B,

(µ(Intm(E))→ µ(E) and µ(∂m(E))→ 0)⇐⇒ (µ(Fr(E)) = 0) .

Thus, if µ(Fr(En)) = 0, n ≥ 1, then αn,m → 0 as m→ +∞, decreasingly, for each n.

Proof. The last statement shall obviously follow, via Lemma 2.1., from the one preceding it.
We shall briefly sketch the proof of the equivalence. If C ⊆ Ω, let C◦ denote its topological
interior.

To prove the implication ⇒, first observe that from (i), (ii), and (iii) it follows that E◦ =
∪m≥1Intm(E)◦. Since (Intm(E)◦)m≥1 increases (cf. proof of Lemma 2.1.) and µ ≥ 0, (ii)
gives µ(∪m≥1Intm(E)) = µ(∪m≥1(Intm(E))◦) = limm→+∞↑ µ(Intm(E)◦) = µ(E◦). Observe
that ∩m≥1∂m(E) = Ω \ (∪m≥1(Intm(E) ∪ Intm(Ec))). Since µ(∂m(E)) → 0, and µ(Ω) = 1,
the preceding applied to both E and Ec gives 0 = 1− µ(∪m≥1Intm(E))− µ(∪m≥1Intm(Ec)) =
1− µ(E◦)− µ((Ec)◦) = µ(Fr(E)).

To prove the reverse implication ⇐, take x ∈ ∩m≥1∂m(E)◦. Let O be open and x ∈ O. Then
from (i), (ii), (iii), and Definition 2.1, we get µ(E ∩O)µ(Ec ∩O) > 0. Hence O intersects E and
Ec; therefore ∩m≥1∂m(E)◦ ⊆ Fr(E). But from (ii), the hypothesis and the proof of Lemma 2.1.,
it follows that 0 = µ(∩m≥1∂m(E)) = limm→+∞ ↓ µ(∂m(E)). Finally as E ⊆ Intm(E) ∪ ∂m(E),
and Intm(E) ⊆ E, this implies limµ(Intm(E)) ≤ µ(E) ≤ limµ(Intm(E)) + limµ(∂m(E)) =
limµ(Intm(E)). �

As is easily seen, the conditions of Theorem 3.1. are satisfied for number systems on the
interval as defined at the beginning of this Section. Thus for these αn,m →m→∞ 0 for any n.

Counter-example 3.1. Let (Ω,B, µ) = (Γ, C, ν) = ([0, 1[,B,m). Let Pn = {[ k2n ,
k+1
2n [: 0 ≤ k <

2n}, n ≥ 1 (here ∆n = {0, 1, . . . , 2n − 1}). Let tn(x) = 2nx mod 1. Then (tn) ∈ ABP (T ).
Next choose 0 = n0 < n1 < . . . < nk < nk+1 < . . . a subsequence of integers. Then define
P ′n = Pnk

whenever nk ≤ n < nk+1. It is obvious that T ′ = ([0, 1[,B,m, (P ′n)) is an algorithm;
if we put t̄n = tnk

when nk ≤ n < nk+1, then (t̄n) ∈ ABP (T ′). Now let us suppose additionally
that nk+1

/
nk → ∞. Then for any d ∈]0, 1[, and any x ∈ [0, 1[, the set of limit points of

( 1
N

∑N
1 1[0,d)(t̄n(x)))N≥1 contains 0 or 1. Hence (1.2) does not hold. �

In the two following remarks, we point out some occurences of renormalization and barycen-
trical positions.

Remark 3.1. The map f(x) = 2
πArcsin

√
x determines a topological C1 conjugacy between the

classical quadratic map Tx = 4x(1 − x) [CoEc] and the tent map Sx = 2x if 0 ≤ x ≤ 1
2 and

Sx = 2 − 2x if 1
2 ≤ x ≤ 1 (see [Wa] for dynamical systems and conjugacy). Since S preserves

Lebesgue measure on [0, 1] and f is differentiable then T admits an absolutely continuous invariant
measure with density f ′(x)dx. But (Sn) ∈ ABP (T ), where T is as in the Counter-example 3.1. A
straightforward computation shows that if we set P̄n = f−1(Pn), then T̄ = ([0, 1],B, f ′dm, (P̄n))
is an algorithm and (Tn) ∈ ABP (T̄ ), when T̄ is renormalized to (Γ, C, ν) = ([0, 1],B, f ′dm). The
interested reader may consult [Pa] for further examples in this direction. �

Remark 3.2. Saying m-a.s., x ∈ [0, 1[ is normal to base 2 [Bo], [KuNi], or that Eq. (1.2) is
valid for the algorithm T of Counter-example 3.1., is strictly the same.

4. Examples of renormalization when Ω = Γ = [0, 1]2

For (x, y) ∈ (0, 1)2, let us write x =
∑
i≥0

xi

2i and y =
∑
j≥0

yj

2j denote there respective dyadic
expansions (xi, yj ∈ {0, 1} and x0 = y0 = 0).

For n ≥ 0 let Dn = {Cn(k, l) := ( k
2n ,

k+1
2n )×( l

2n ,
l+1
2n ) : 0 ≤ k, l < 2n} be the partition of (0, 1)2

by so-called in the sequel dyadic squares of order n (the partition is one mod 0 with respect to
Lebesgue measure m2 on (0, 1)2). Let B be the Borel σ-algebra on (0, 1)2.
Example 4.1. Given n ≥ 0 we shall slightly refine Dn to a new partition Pn. Take some
Cn(k, l) ∈ Dn and cut it into two rectangles of equal area according to the following rule (see
Figure 2 );
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– if k+ l = 0 (mod 2) then cut Cn(k, l) by a parallel to the x axis in IR2; suppose for instance
Cn(k, l) = (a, b)× (c, d): then put Pn(k, l, 0) = (a, b)× (c, c+d2 ) and Pn(k, l, 1) = (a, b)× ( c+d2 , d);

– if k+ l = 1 (mod 2) then cut it parallel to the y axis in IR2: put Pn(k, l, 0) = (a, a+b
2 )× (c, d)

and Pn(k, l, 1) = (a+b
2 , b)× (c, d).

Finally let Pn = {Pn(k, l, ε) : 0 ≤ k, l < 2n, ε = 0, 1}. It is not difficult to check that indeed the
sequence (Pn)n≥0 is refining and converging to E . Thus an algorithm T1 = ((0, 1)2,B,m2, (Pn)n≥0)
is constructed. Next let us choose (Γ, C, ν) = ((0, 1)2,B,m2).

Lemma 4.1. For n ≥ 0, and x, y ∈ (0, 1) let

tn(x, y) =
(

2n+|xn−yn|x mod 1, 2n+1−|xn−yn|y mod 1
)
.

Then (tn) ∈ ABP (T1).

Proof. If (x, y) ∈ Cn(k, l) then |xn − yn| = k + l mod 2. Assume for instance that k + l = 0
mod 2; let d, d′ ∈]0, 1]. Then using the definition of tn(·, ·) in Lemma 4.1, we get{

t−1
n ((0, d)× (0, d′)) ∩ Pn(k, l, 0) = ( k

2n ,
k+d
2n )× ( l

2n ,
2l+d′

2n+1 );
t−1
n ((0, d)× (0, d′)) ∩ Pn(k, l, 1) = ( k

2n ,
k+d
2n )× ( l

2n ,
2l+1+d′

2n+1 ).

Similar formulas hold when k + l = 1 mod 2. The proof follows. �
In view of Theorem 2.1. we now proceed to the estimation of the αn,m’s. Let Vn = t−1

n ((0, d)×
(0, 1)) and Hn = t−1

n ((0, 1)× (0, d′)), take A = (0, d)× (0, d′) and let En = t−1
n (A), n ≥ 0.

Since En = Vn ∩ Hn, it follows that ∂n+m(En) ⊆ ∂n+m(Vn) ∪ ∂n+m(Hn) (cf. Definition
2.1). By drawing a picture it appears obvious that max(m2(∂n+1(Vn)),m2(∂n+1(Hn))) ≤ 3

4 , and
inductively also obvious is the fact that

max (m2(∂n+m(Vn)),m2(∂n+m(Hn))) ≤
(

3
4

)m
.

From ∂n+m(En) ⊆ ∂n+m(Vn) ∪ ∂n+m(Hn) this leads to αn,m ≤ 2
(

3
4

)m, which in the light of
Corollary 2.1 gives (see [KuNi] for uniformly distributed sequences in (0, 1)2)

Theorem 4.1. For m2 a.e. (x, y) ∈ C, and any d, d′ ∈]0, 1], any ε > 0,∣∣∣∣∣∣ 1
N

∑
0≤n<N

1(0,d)×(0,d′)(tn(x, y))− dd′
∣∣∣∣∣∣ = O

(
log

3
2 +εN√
N

)
.

Hence, m2 a.e., the sequence
(
(2n+|xn−yn|x mod 1, 2n+1−|xn−yn|y mod 1)

)
n≥0

is uniformly dis-
tributed in (0, 1)2.
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Example 4.2. Let us start again with dyadic squares of order n in Dn and refine them. Taking
Cn(k, l) ∈ Dn, let us cut it into 4 pieces, using the two diagonals of square Cn(k, l). Let Pn be
the partition deduced this way from Dn. Then Pn+1 is finer than Pn, and (Pn)n≥0 converges to
E . Hence we have an algorithm T2 = (C,B,m2, (Pn)). Let us choose again (Γ, C, ν) = (C,B,m2).

Given (x, y) ∈ C let x(n) =
∑

0≤i≤n
xi

2i and y(n) =
∑

0≤j≤n
yj

2j , where we still refer to the
dyadic expansions. Also put x′(n) = x(n) + 1

2n and y′(n) = y(n) + 1
2n , n ≥ 0.

If M,N ∈ IR2, M 6= N , let D(M,N) be the strait line passing both through points M and
N . Figure 3 introduces some further notations; it pictures one of the four possibilities to locate
X inside the nth order dyadic square containing it once this square has been cut through by its
diagonals. However the construction to follow exhibiting some sequence in ABP (T2) shall not
rely on this particularity.

The symbol || stands for ”parallel”. Points Ln and In on Figure 3 are constructed such that
both D(X, In)||D(An, Cn) and D(X,Ln)||D(Bn, Dn). Shortening notations, if z ∈ [0, 1[, we let
2nz stand for 2nz mod 1. Then undergraduate computations lead to{

βn(X) := d(Dn, In) = 1√
22n

(1− |2nx− 2ny|) ;
γn(X) := d(Kn, X) = 1√

22n
(1− |2nx− 2ny| − |1− (2nx+ 2ny)|) .

Putting `n := d(An, Zn) = 1√
22n

, we may define

tn(x, y) =

(
(1− |2nx− 2ny|)2,

(
1− |2nx− 2ny| − |1− (2nx+ 2ny)|

1− |2nx− 2ny|

)2
)

(4.1)

(which is nothing else but (
(
βn(X)
`n

)2

,
(
γn(X)
βn(X)

)2

)).

Denote by T (X,Y, Z) the region delimited by the triangle with edges X, Y , and Z in IR2.
Then we can easily observe (use Figure 3 and Eq. (4.1)) that for d, d′ ∈]0, 1],

t−1
n ((0, d)× (0, d′)) ∩ T (An, Zn, Dn) = T (Jn, X,Kn)

if tn(X) = (d, d′). Then by construction m2(T (Jn, X,Kn)) = dd′m2(T (An, Zn, Dn)). Thus we
have

Lemma 4.2. The sequence (tn)n≥0 defined in Eq. (4.1) is in ABP (T2).

Now we turn to the estimation of the αn,m’s (cf. Theorem 2.1.). Chosen A = (0, d)×(0, d′) ⊆ C
let us introduce Vn = t−1

n ((0, d)× (0, 1)) and Hn = t−1
n ((0, 1)× (0, d′)), n ≥ 0, as in Example 4.1.

From Definition 2.1 and Eq. (4.1) we deduce ∂n+m(En) ⊆ ∂n+m(Vn) ∪ ∂n+m(Hn). Drawing a



8 P. HUBERT & Y. LACROIX?

picture at first shows that m2(∂n+1(Hn) ∩ Pn,i) ≤ 3
4 , where Pn,i ∈ Pn. And the same holds for

Vn. Again this repeats inductively and we get

max (m2(∂n+m(Vn)),m2(∂n+m(Hn))) ≤
(

3
4

)m
,

and henceforth αn,m ≤ 2
(

3
4

)m. In view of Corollary 2.1. we obtain

Theorem 4.2. For m2 a.e. (x, y) ∈ C, the sequence (tn(x, y)) defined in Eq. (4.1) is uniformly
distributed in (0, 1)2. Moreover, for such points (x, y), any d, d′ ∈ [0, 1], any ε > 0,∣∣∣∣∣∣ 1

N

∑
0≤n<N

1(0,d)×(0,d′)(tn(x, y))− dd′
∣∣∣∣∣∣ = O

(
log

3
2 +εN

√
N

)
.

5. Hints towards Cantor-Bernstein lemmas, central
limit theorems, or a.s. cnvergence in Lp spaces

A typical example for “Cantor-Bernstein” lemmas is [Kh, Thm 32]. Now using [Khi], bottom
of page 65, and “barycentrical positions” as in Theorem 3.1., we propose

Exercise 5.1. Give a new proof with renormalization technics of [Kh, Thm 32]. State a “Cantor-
Bernstein” type lemma for Cantor products [La]. And for dyadic expansions? Or Example 4.1.?

Using technics from [Ko] and [Pe], concerning the central limit theorem, we propose

Exercise 5.2. With the barycentrical positions of Theorem 3.1., for the partitions associated to
Cantor products [La], find conditions on Fourier coefficients of f ∈ L2(T) (assume

∫
T fdm = 0)

ensuring that f(tn(·)) obeys a central limit theorem.

Exercise 5.3. Using [RoWi, Chap. VI], find a sequence (mn) of integers such that mn|mn+1 and
there exists an f ∈ L∞(T) for which, setting tn(x) = mnx mod 1, ( 1

N

∑N
1 f(tn(x)))N fails to

converge m-a.s.. Also apply to this case [KSZ] in order to guarantee that for f ∈ L2(T) satisfying
some Fourier conditions, the above m-a.s. convergence holds.
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[Ph] Philipp, W, Some metrical theorems in number theory, Pac. J. of Math. 20 (1) (1967), 109-127.

[Ro] Rohlin, V, A, On the main notions of measure theory, Mat. Sb. 67(1) (1949), 107-150.

[RoWi] Rosenblatt, J. M. & Wierdl, M., Pointwise ergodic theorems via harmonic analysis, London Math. Soc.

Lecture Note Series (Petersen, K. E. & Salama, I. A., eds.), Proceedings of the 1993 Alexandria Conf.,

vol. 205, 1995, pp. 3–151.



RENORMALIZATION OF ALGORITHMS IN THE PROBABILISTIC SENSE 9

[Sc] Schweiger, F, Ergodic theory of fibered systems and metric number theory, Clarendon Press, Oxford

University Press, 1995.
[Wa] Walters, P, An introduction to ergodic theory, Springer, 1982.
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