
ALMOST 1-1 EXTENSIONS OF FURSTENBERG–WEISS

TYPE AND APPLICATIONS TO TOEPLITZ FLOWS

T. Downarowicz♣, Y. Lacroix♥

Abstract. Let (Z, TZ) be a minimal non-periodic flow which is either symbolic or
strictly ergodic. Any topological extension of (Z, TZ) is Borel isomorphic to an almost
1-1 extension of (Z, TZ ). Moreover, this isomorphism preserves the affine-topological
structure of the invariant measures. The above extends a theorem of Furstenberg-
Weiss (1989). As an application we prove that any measure-preserving transformation
which admits infinitely many rational eigenvalues is measure-theoretically isomorphic
to a strictly ergodic Toeplitz flow.

Introduction

In 1989, Furstenberg and Weiss proved a theorem [F-W, Theorem 1] which can
be informally expressed as follows: every topological point-transitive flow (X,TX)
which is an extension of a minimal non-periodic flow (Z, TZ) is in some sense equiv-
alent to a minimal flow (Y, TY ) which is an almost 1-1 extension of (Z, TZ). The
equivalence is given by a Borel measurable injective map φ defined on a subset
X ′ ⊂ X whose mass is 1 for any TX -invariant probability measure carried by X .
Such a Borel embedding provides a 1-1 affine map φ∗ (defined as the adjacent map
on measures) from the set P (X) of all TX -invariant probability measures carried by
X into the set P (Y ) defined analogously for the flow (Y, TY ). Moreover, for every
µ ∈ P (X), φ is a measure theoretic isomorphism between the measure preserving
transformations (X,BX , µ, TX) and (Y,BY , φ

∗(µ), TY ) (here BX and BY denote the
σ-fields of Borel measurable sets in X and Y , respectively).

In this paper we improve the Furstenberg-Weiss theorem. By involving the
methods of symbolic dynamics we obtain a stronger isomorphism by even weaker
assumptions: dropping transitivity of (X,TX) we construct (Y, TY ) and φ such that
in addition to all previous properties, φ∗ is a homeomorphism between P (X) and
P (Y ) for the weak∗ topology of measures. This is partially achieved by obtaining
the image Y ′ = φ(X ′) of mass 1 for every ν ∈ P (Y ), and partially by controlling the
frequencies with which blocks occur in sequences. This kind of isomorphism (which
we call “Borel∗”) is probably the best one can expect to exist between a nearly
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arbitrary topological flow (the only restriction is that it admits a minimal non-
periodic factor) and a minimal one. Clearly, obtaining a topological isomorphism is
impossible, nevertheless, our isomorphism behaves like one at the level of invariant
measures. In particular, in virtue of the variational principle, topological entropy
is preserved (this was not guaranteed by the original version of the theorem).

Our proof is based on combinatorial constructions conducted on symbolic flows
(subshifts). Most operations have their direct translations to the general topological
case, for instance observing repeating blocks along a sequence corresponds to finding
return times of an orbit to a fixed open set. Some tricks, however, like replacing
each occurrence of a block by another block of the same length, or permuting
certain letters within a block, might lead to a rather complicated description when
translated to the general topological language. This is why we decided to state the
main result for subshifts. Later we discuss the possibility of extending it to the
general case. An additional advantage of such formulation is that obtaining (Y, TY )
symbolic in case of (X,TX) symbolic (and transitive) does not follow directly from
the original Furstenberg-Weiss theorem (it can be derived from it via a theorem of
Denker-Keane [D-K, Theorem 20], but then it works for a fixed measure on (X,TX)
only).

At the end of the section devoted to the symbolic case we make a digression
concerning the by us exploited special type of codes.

In the last section, as an application of the obtained results, we present a mea-
sure theoretic (and Borel∗) characterization of Toeplitz flows. In particular, some
previous results on possible point spectra of Toeplitz flows obtained in [I-L], [I], and
[D-L] are now covered.

The symbolic theorem

By a topological dynamical system (flow) we shall mean a pair (X,TX), where
X is a compact metrizable space and TX is a homeomorphism of X onto itself. By
P (X) we will denote the collection of all TX -invariant Borel probability measures
on X . It is known that this set in convex (even a simplex) and compact for the
weak∗ topology of measures. A Borel subset X ′ ⊂ X is called a full set if every
measure µ ∈ P (X) assigns to it the mass 1.

By a Borel∗ isomorphism between two flows (X,TX) and (Y, TY ) we shall un-
derstand a Borel measurable invertible map φ : X ′ → Y ′ between full sets X ′ ⊂ X
and Y ′ ⊂ Y , such that φ ◦ TX = TY ◦ φ and the adjacent map φ∗ : P (X)→ P (Y ),
defined by

φ∗(µ)(A) = µ(φ−1(A))

(for any Borel set A ⊂ Y ), is an affine homeomorphism for the weak∗ topology.
Obviously, a composition of Borel∗ isomorphisms is a Borel∗ isomorphism.

In symbolic dynamics one considers subshifts, i.e., the flows (Z, S), where S
denotes the shift transformation on ΛZ and Z is a shift-invariant closed subset of
ΛZ. The set Λ is called the alphabet. Wherever we do not specify differently, we
assume the alphabets appearing in this paper to be finite.

A block over the alphabet Λ is a k-tuple B = (λ0, λ1, ..., λk−1) ∈ Λk. We denote
by |B| the length k ∈ N of the block B. We say that B occurs in a sequence z ∈ ΛZ

if (z(n), z(n + 1), ..., z(n + k − 1)) = B for some n ∈ Z. The interval of integers
[n, n + k) = {n, n + 1, ..., n + k − 1} is then called the domain of the occurrence.
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Given finitely many blocks B1, B2, ..., Br we can build their concatenation, i.e., the
block B = B1B2...Br. We say that a block C starts with B if C = B or C = BD
for some block D.

It is well known that for a minimal subshift (Z, S) every block which occurs in
some z ∈ Z occurs in each element of Z syndetically, i.e., it occurs arbitrarily far
in both directions and the distances between consecutive occurrences are bounded.
We say that a block B has non-overlapping occurrences if for any z ∈ Z the domains
of any two different occurrences of B in z are disjoint.

z = ...B..B.....B.B...B....B..BB.....B...B..BB...B..B.....B...

Clearly, all blocks of length 1 have this property. If B has non-overlapping occur-
rences then by a B-block we shall mean any block B... which starts with B, and
such that:
• B... cannot be written as a concatenation involving two occurrences of B, and
• B...B occurs in some z ∈ Z.
By minimality, the lengths of all B-blocks are bounded, hence the collection of all
B-blocks is finite. Every z ∈ Z can be represented in a unique way as a concatena-
tion of B-blocks.

The following fact is the starting point of our construction:

Lemma 1. Assume (Z, S) is a minimal non-periodic subshift. Let B be a block
having non-overlapping occurrences in Z. Then there exist arbitrarily long blocks
starting with B and having non-overlapping occurrences.

Proof. Let B... denote a fixed B-block. Suppose B...B has overlapping occur-
rences. This implies that B...B...B occurs in Z. If the last block has overlapping
occurrences then B...B...B...B occurs in Z, and so on. By minimality and non-
periodicity, some block C = B...B...B... · · ·B...B (essentially longer than B) has
non-overlapping occurrences. Repeating the same argument for C, and so on, we
can obtain arbitrarily long blocks of the required form. �

It is important to note that
(1) if C starts with B and is sufficiently long then it starts with a concatenation
of B-blocks, while
(2) each C-block is a concatenation of B-blocks.

Recall that by a factor map between two flows (X,TX) and (Z, TZ) we mean a
continuous surjective map π : X → Z, such that π ◦TX = TZ ◦π. For a given factor
map π, by fibers we understand the preimages of points. We say that π provides an
almost 1-1 extension if the subset of points of Z having one-point fibers is residual.
If (Z, TZ) is minimal then it suffices to find out that a one-point fiber exists to have
the extension established almost 1-1. Almost 1-1 extensions play an important role
in topological dynamics. Many topological properties pass to almost 1-1 extensions
(for instance see [A] for topological disjointness).

The main result of this paper is the following symbolic version of the Furstenberg-
Weiss theorem:

Theorem 1. Let (Z, S) be a minimal non-periodic subshift over an alphabet Λ,
and let (X,S) be a subshift over an alphabet Σ. Suppose there exists a factor map
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πX : X → Z. Then there exists a subshift (Y, S) and a following commutative
diagram

X
φ
←→ Y

πX
↘ ↙πY

Z

where φ is a Borel∗ isomorphism and πY provides an almost 1-1 extension.

Proof. By Lemma 1 and by (1), we can choose inductively two sequences of blocks
Bt and Ct (over Λ) appearing in Z, such that for each t ≥ 1
(3) Bt and Ct have non-overlapping occurrences in z,
(4) Ct starts with a concatenation of 2lt + 2 Bt-blocks, where lt is the length of
the initial Bt-block in Ct.
(5) Bt+1 starts with such a long concatenation of Ct-blocks that every existing
(in Z) Ct-block is used in it at least rt = (#Σ + 1)2mt times, where mt is the
maximal length of a Ct-block.
We denote by Bt::: the Bt-block with which Ct starts (hence each Ct-block also
starts with Bt:::).

2lt+2 Bt-blocks
︷︸︸︷

Bt:::
︷︸︸︷

Bt...
︷ ︸︸ ︷

Bt.....
︷︸︸︷

Bt..
︷ ︸︸ ︷

Bt....
︷︸︸︷

Bt..Bt...Bt
︸ ︷︷ ︸

Ct

....Bt..Bt...

︸ ︷︷ ︸

Ct-block

For fixed t ≥ 1, every z ∈ Z can be represented in a unique way as an infinite
concatenation of Ct-blocks, each decomposing into at least 2lt + 2 Bt-blocks.

Let Ξ = Σ × (Σ ∪ {�}) × Λ, where � is an additional symbol. By letters we
shall mean the elements of Σ. We will view the elements of Ξ as columns of height
3, hence the sequences over Ξ will be represented as three sequences (rows): the
top row containing letters, the central row containing letters and squares, and the
bottom row containing elements of Λ. The positions in the central row will be called
cells. A cell can be occupied or empty depending on whether it contains a letter or a
square. To start the construction, we treat each element x ∈ X as the top row and
we add two rows below it: the central row consisting entirely of empty cells, and
the bottom row identical with πX(x). Since πX is continuous, this procedure yields
a topologically isomorphic representation of (X,S) as a subshift over the alphabet
Ξ. From now on by (X,S) we shall mean this representation.

x ≡
· · ·
· · ·
· · ·

σ−1

�

λ−1

σ0

�

λ0

σ1

�

λ1

σ2

�

λ2

· · ·
· · ·
· · ·

←
←
←

top row, letters, x
middle row, cells
bottom row, πX(x)

Consider a block over the alphabet Ξ such that its bottom row is a Ct-block.
We call every such block a t-train. Observe that
(6) there exist not more than rt different t-trains with a common bottom row.
We have the following decomposition of the t-trains:
(7) each t-train decomposes to a concatenation of a locomotive having Bt::: in the
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bottom row, (hence of length lt), and following it at least 2lt + 1 wagons (having
further Bt-blocks in the bottom row).

locomotive
︷ ︸︸ ︷∣
∣
∣
∣
∣
∣

.......

.......
Bt:::

∣
∣
∣
∣
∣
∣

at least 2lt+1 wagons
︷ ︸︸ ︷∣
∣
∣
∣
∣
∣

.......

.......
Bt...

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

.........

.........
Bt.....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......

......
Bt..

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

........

........
Bt....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......

......
Bt..

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

.......

.......
Bt...

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

........

........
Bt....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......

......
Bt..

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

.......

.......
Bt...

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

t-train

We must remember that, except for t = 1,
(8) the locomotive and the wagons are concatenations of (t−1)-trains.
It follows immediately from the representation of (X,S) as a subshift over Ξ that
for each t ≥ 1 every x ∈ X can be decomposed in a unique way as an infinite
concatenation of t-trains. Obviously, by the construction, the positioning of the
component t-trains, their locomotives and wagons is determined by the third row
πX(x). The t-trains occurring in X will be called original t-trains.

We will soon define a sequence of maps φt on X into some subshifts over Ξ.
Each of the maps φt will be obtained by a code replacing consecutively the orig-
inal t-trains by other t-trains. At most coordinates φt+1(x) coincides with φt(x).
The only differences are due to the described below modifications. The idea is
to introduce certain syndetically repeating new blocks (modification (B)) without
forgetting the letters which these blocks would overwrite. To achieve this goal we
first have to “memorize” these letters by copying them into the empty cells in the
middle row (modification (A)).

Step 1
Let W1 be an arbitrarily chosen block over the alphabet Ξ (W1 need not occur in

X) having B1::: in the bottom row (hence of length l1). The 1-code is defined as a
transformation of the original 1-trains by applying the following two modifications:
(A) using consecutively all the letters occurring in the top row of the locomotive
we fill in the terminal empty cells in each of the next l1 wagons,
(B) we replace the locomotive by the new locomotive W1.
By regular 1-trains we shall mean the images of the original 1-trains by the 1-code.

locomotive
︷ ︸︸ ︷∣
∣
∣
∣
∣
∣

σ1σ2...σl1

�.......�
B1:::

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

........
�..�
B1....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

..........
�.....�
B1......

∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣

.........
�...�
B1.....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......
�.�
B1..

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

........
�...�
B1....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

.......
�..�
B1...

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......
�.�
B1..

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

original 1-train

W1

︷ ︸︸ ︷∣
∣
∣
∣
∣
∣

............

............
B1:::

∣
∣
∣
∣
∣
∣

l1 wagons
︷ ︸︸ ︷∣
∣
∣
∣
∣
∣

........
�..σ1

B1....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

..........
�.....σ2

B1......

∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣

.........
�...σl1

B1.....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......
�.�
B1..

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

........
�...�
B1....

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

.......
�..�
B1...

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

......
�.�
B1..

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

regular 1-train

Note that the 1-code does not affect the terminal wagon of the 1-train and thus
the terminal cell of each regular 1-train remains empty. Next, since W1 has B1::: in
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the bottom row, the entire bottom row of each 1-train remains unchanged. Finally,
observe that the original 1-train can be reconstructed from its image by removing
the upper two rows of the locomotive and filling the top row by the letters occupying
the terminal cells of the next l1 wagons (at the same time we empty these cells).
Thus, it is clear that the 1-code is a 1-1 correspondence between the original and
regular 1-trains.

Inductive assumption
Let t ∈ N and suppose that

(9) a t-code has been defined as a 1-1 correspondence between the original t-trains
and their images called regular t-trains,
(10) the bottom row is unchanged by the t-code,
(11) the terminal cell of each regular t-train is empty.

Step t+ 1
We create a block Wt+1 over the alphabet Ξ (Wt+1 not necessarily occurring in

φt(X)) so that:
(12) the bottom row of Wt+1 is Bt+1:::,
(13) Wt+1 is a concatenation of regular t-trains,
(14) every regular t-train is used at least once in the above concatenation (this is
possible to satisfy by (5) and (6)).
We define the (t+1)-code on the original (t+1)-trains in the following way: we first
replace all original t-trains, to which the given original (t+1)-train decomposes
(see (8)), by their images by the t-code. The so obtained (t+1)-train we shall call
the t-coded (t+1)-train. Next we apply the following two modifications:
(A) using consecutively all the letters and squares occurring in the top and middle
rows of the locomotive of the t-coded (t+1)-train we fill in the terminal empty cells
in each of the next 2lt+1 wagons (by (7) there is enough wagons, observe that each
wagon of a t-coded (t+1)-train is a concatenation of regular t-trains, hence, by (11)
its terminal cell is empty),
(B) we replace the locomotive by Wt+1.

Note, that the above modifications do not affect the terminal wagon of the
t-coded (t+1)-train. Thus the terminal cell remains empty, as required in (11).
Clearly, by (12), the bottom row is unchanged, as required in (10). We can reverse
the modifications (A) and (B) by emptying the two upper rows of the locomotive
and filling them back with the letters and squares appearing in the terminal cells of
the next 2lt+1 wagons (at the same time we empty these cells). Next, the original
(t+1)-train can be recovered from the t-coded (t+1)-train by reversing the t-code
(use the inductive assumption (9)). Thus the (t+1)-code is a 1-1 correspondence,
as required in (9).
End of induction

The following obvious observations are important:
(15) the modification (B) replaces regular t-trains by other regular t-trains pre-
serving the bottom row (see (13) and (12)),
(16) the modification (B) preserves all the locomotives Ws with s ≤ t introduced
by the t-code
(because the distribution of these locomotives within a regular t-train depends only
on the third row, and after the step t there are no other locomotives than Ws).

During the modifications (A) and (B) in step (t+1) each (regular) t-train of the
t-coded (t+1)-train can be either left unaffected, or replaced by another regular
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t-train (modification (B)), or it can happen that a letter will be inserted into its
terminal cell (modification (A)). A t-train differing from a regular one by having
the terminal cell occupied will be called an irregular t-train. Thus,
(17) every regular (t+1)-train is a concatenation of regular and irregular t-trains.

Later we shall be also using a reversed procedure. A given regular t-train can
be t-decoded, i.e., replaced by its (unique) preimage by the t-code. Moreover, we
can also t-decode an irregular t-train simply disregarding the letter occupying the
terminal cell. For instance, we can t-decode a regular (or irregular) (t+1)-train by
t-decoding all component t-trains. Comparing the t-decoded (t+1)-train with the
original ((t+1)-decoded) (t+1)-train we can see that the differences result from
applying and not applying the reversed modifications (A) and (B), hence
(18) the t-decoded (t+1)-train differs from the original (t+1)-train only in having
a different locomotive
(in the first case we have t-decoded the component t-trains of Wt+1, while in the
second case Wt+1 has been removed and the original locomotive has been recovered
from the terminal cells of the wagons – these cells have been ignored in the first
case).

The maps φt

Fix x ∈ X and t ≥ 1. As noticed before, x decomposes in a unique way to an
infinite concatenation of original t-trains. We define φt(x) as the sequence obtained
from x by replacing each original t-train in x by its image by the t-code. Note, that
the locomotives of all the t-trains of φt(x) are Wt, hence
(19) Wt occurs in φt(x) syndetically.
It is easily seen that φt is continuous, injective and commutes with the shift transfor-
mation. Thus φt provides a topological isomorphism between (X,S) and (φt(X), S).
We will be using the following facts:
(20) φt(x) is a concatenation of regular t-trains,
(21) for each s > t, φs(x) is a concatenation of regular and irregular t-trains.
The last statement is obvious for s = t+ 1 (see (17)). For larger s use an inductive
argument and the observation that the modification (B) replaces regular s-trains by
other regular s-trains (see (15)), while modification (A) inserts letters into terminal
cells of some wagons of the s-trains, and these cells are terminal with respect to
t-trains, so some more irregular t-trains are produced.

The map φ and its domain X ′

Let

Zt,n = {z ∈ Z : n ∈ the domain of the starting Bt-block Bt::: in a Ct-block of z}.

Estimating the mass assigned to a set by an invariant probability measure by the
maximal frequency at which this set is visited by some trajectory, we can see that
each such measure assigns to Zt,n a mass at most 1/2lt. It follows easily from the
construction, that lt and rt grow exponentially, hence

(22)
∑

t

1

lt
<∞, and

∑

t

1

rt
<∞.

Thus
Z ′ = Z \

⋃

n∈Z

⋂

s≥1

⋃

t≥s

Zt,n
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is a full set. This implies that X ′ = π−1
X (Z ′) is also a full set in X . On the other

hand, it is easily seen that

X ′ = {x ∈ X : each coordinate falls into the domain of a locomotive

of a t-train for at most finitely many indices t}.

Observe that
(23) if x ∈ X ′ then every its block is subject to at most finitely many modifications
during the construction of the sequence (φt(x)) (see argument below).
Modification (B) affects only the locomotives. Modification (A) in step (t+1) alters
the terminal letters of some wagons. By (8), every such letter is followed by a
locomotive of a t-train. Thus if a letter were modified infinitely many times, then
this or the following coordinate would fall into the domain of a locomotive for
infinitely many indices.

It is now clear that the maps φt converge (coordinatewise) on X ′. Thus the map

φ = lim
t
φt

is well defined on the full set X ′. Obviously, φ is Borel measurable and commutes
with the shift. Note that, by (21),
(24) for each x ∈ X ′ and t ≥ 1, φ(x) is a concatenation of regular and irregular
t-trains.

Minimal almost 1-1 extension.
We need to prove that φ provides a Borel isomorphism between (X,S) and a

subshift (Y, S) which is a minimal almost 1-1 extension of (Z, S).
Consider an x ∈ X ′. Denote y = φ(x). Let B = y[n,m) be a block of y. By the

definition of X ′, we can find t be large enough, so that
(25) [n,m) does not intersect any domain of a locomotive for any s > t.
Moreover, by (23), we can assume that

φt+1(x)[n,m) = φ(x)[n,m) = B.

It is now seen that B is a part of a regular (t+1)-train in φt+1(x), thus, due to (14),
it occurs as a part of Wt+2. This implies that B is introduced in a syndetic way
in φt+2(x) (see (19)). By (16), all these occurrences remain unaltered in further
steps, so they occur in y. We have proved that y satisfies the well known criterion
for having a minimal orbit-closure. Moreover, by the above argument, any block
occurring in y also occurs in y′ = φ(x′) for any x′ ∈ X ′ (because it occurs in Wt for
some t). Hence φ(X ′) is contained in one minimal subshift (Y, S) over the alphabet
Ξ. It is obvious (by (10)) that each element y of (Y, S) has an element of (Z, S)
in the bottom row, thus (Y, S) is an extension of (Z, S). Denote by πY : Y → Z
the projection on the bottom row in Y . By minimality of (Z, S), this projection is
surjective.

At this point, we can note that commuting of the diagram as in the assertion of
the theorem holds, because φ preserves the bottom row.

We will now prove that πY provides an almost 1-1 extension. Let y = φ(x)
(x ∈ X ′) and let z = πY (y). Note the following: every block of y having Ct in the
bottom row starts with Wt. By minimality of (Y, S), this property passes to all
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elements of Y . Recall that Ct occurs many (more than 3) times in Bt+1:::. Thus
we can find a z0 ∈ Z such that for each t ≥ 1 the zero coordinate is contained in
the domain of a non-extreme (neither initial nor terminal) occurrence of Ct in the
starting Bt+1::: of some occurrence of Ct+1 in z0.

———————–

︸ ︷︷ ︸

Ct+1

· ·———————–

︸ ︷︷ ︸

Ct+1

· ·

0 coordinate

–
Ct

··
↓
–

Ct

·· –
Ct

·· –
Ct

··
︸ ︷︷ ︸

Bt+1:::

——

︸ ︷︷ ︸

Ct+1

· ·———————–

︸ ︷︷ ︸

Ct+1

··

︸ ︷︷ ︸

Bt+2:::

It is now seen that any preimage by πY of z0 has the block Wt+1 around zero coor-
dinate, and the domains of these blocks expand in both direction as t → ∞. This
determines that the preimage is unique, and the almost 1-1 extension is established.

Define Y ′ = π−1
Y (Z ′). As a preimage of a full set, Y ′ is a full set in (Y, S). We

will show that φ is an invertible map from X ′ onto Y ′. To prove this we construct
a map ψ inverse to φ on Y ′. First note that
(26) φ(X ′) is dense in Y .
Obviously, since φ preserves the bottom row, we have φ(X ′) ⊂ Y ′. Let y ∈ Y
be such that πY (y) ∈ Z ′. For each t, y can be decomposed as a concatenation
of regular and irregular t-trains (use (24) and (26)). For each t ≥ 1 define xt as
the element obtained by t-decoding all t-trains of y. Compare xt with xt+1. The
differences may occur only in the locomotives of the (t+1)-trains (see (18)). On
the other hand, since the bottom row is an element of Z ′, and since the distribution
of the locomotives depends only on the bottom row, y satisfies the condition that
every coordinate n falls into the domain of a locomotive for at most finitely many
indices t. Combining the last two statements we obtain that
(27) xt converge coordinatewise to some x.
We define ψ(y) = x. Consider an interval [n,m). For t large enough, [n,m) is
contained in the domain of a single t-train (satisfying (25) is possible whenever the
bottom row belongs to Z ′). Thus the corresponding block of xt occurs in X (as
a part of an original t-train. This implies that x ∈ X , because X is closed. The
bottom row of x is the same as πY (y) ∈ Z ′, hence x ∈ X ′.

Now, check φ(x) at a coordinate n. As before, by the definition of Z ′, we can
choose t so large that:
(28) for every s ≥ t neither n nor n+ 1 are in the domain of the locomotive of an
s-train.
Thus the regular t-train of φt(x) whose domain C contains n (see (20)) coincides
with the corresponding t-train of φ(x), except perhaps for its last cell (by (28) this
regular t-train is not a part of a larger locomotive, hence when applying the s-codes
for s > t only modification (A) can affect it. Hence
(29) the original t-train of x with domain C can be obtained by t-decoding the
corresponding (regular or irregular) t-train of φ(x).

On the other hand, let t′ ≥ t be so large that
(30) xt′ coincides with x on C.
By the definition of xt′ , the t′-train of xt′ whose domain contains C is obtained
by t′-decoding the corresponding t′-train of y. Since C is not in a domain of any
locomotive for any indices between t and t′, the t′-decoded t′-train of y coincides
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on C with the t-decoded t′-train of y (see (18)). But the part with domain C of
the above t-decoded t′-train of y is simply the t-decoded t-train of y whose domain
is C. In view of (30), we have shown that
(31) the t-train of y whose domain is C, except perhaps for its last cell, can be
obtained by t-coding the corresponding t-train of x.
Combining (29) and (31), we conclude that the t-train of y coincides with the
t-train of φ(x) except perhaps for the last cell. But the coordinate of the last cell
cannot equal n (in which case n + 1 would fall into the domain of the following
locomotive contradicting (28)), hence y and φ(x) agree at n. We have proved that
φ ◦ ψ =identity on Y ′.

Summarizing, φ provides a Borel isomorphism between (X,S) and (Y, S).

Homeomorphism of measures
By the proved properties of φ, the map φ∗ : P (X)→ P (Y ) is affine, and invert-

ible. By the elementary properties of the weak∗ topology, it is seen that φ∗ = limφ∗t .
We shall prove that this convergence is uniform. Because all the maps φ∗t are con-
tinuous, this will suffice for continuity of φ∗. The weak∗ topology of invariant
measures in case of a subshift is metrizable by the following metric:

(32) d∗(µ, ν) =
∑

B∈B

cB|µ(UB)− ν(UB)|,

where B is the set of all finite blocks over the alphabet Ξ, cB is a fixed summa-
ble normalized (i.e., with sum 1) sequence of positive coefficients indexed by the
countable set B, and UB is the closed and open cylinder defined by the block B,
i.e., UB = {x ∈ X : x[0, |B|) = B}.

It is well known (by the Birkhoff Ergodic Theorem) that for each ergodic measure
µ on X , µ-almost every point x ∈ X is generic for this measure, which, in case of
a subshift, can be expressed as follows: for every B ∈ B,

(33) µ(UB) = DZ{n : x[n, n+ |B|) = B}

(DZ denotes the density in Z of a subset). In other words, a point x is generic
for µ if and only if the mass assigned by µ to each cylinder UB coincides with
the frequency with which B occurs in x. Since for each t ≥ 1, φt is a topological
isomorphism, the point φt(x) is then generic for φ∗t (µ).

Fix an ε > 0. We can divide B in two parts: a finite set Bε and B \ Bε such that
the sum of the coefficients cB over the latter set is less than ε. Let k(ε) = max{|B| :
B ∈ Bε}. By (22), we can find t so large that

∑

s≥t

3

rt
<

ε

k(ε)
.

For every s ≥ t the upper density of the set of coordinates where φt(x) differs
from φs(x) is hence less than ε

k(ε) (because φt+1(x) differs from φt(x) along at most

3lt+1 coordinates within the domain of each (t+1)-train and the length of each
(t+1)-train is at least rt+1lt+1). This implies that
(34) the frequencies with which a block B ∈ Bε occurs in φt(x) and in φs(x) may
differ by at most k(ε) ε

k(ε) = ε.

Combining (32), (33), the definition of Bε, and (34), we obtain

d∗(φt(µ), φs(µ)) < 2ε.
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This yields the desired uniform convergence for ergodic measures, which, by con-
vexity of the metric d∗, extends to all invariant measures. The map φ∗ has been
proved continuous, hence, as an invertible map between compact sets, it is a home-
omorphism. This completes the proof of Theorem 1. �

Remarks on reducing the alphabet
It might be interesting to note that the flow (Y, S) can be represented as a

subshift over the same alphabet Σ as used originally by (X,S). This is possible
thanks to the power of a Borel∗ isomorphism, more precisely, by the fact that it
preserves topological entropy. Namely, we have the following

Lemma 2. The subshift (Y, S) of Theorem 1 is topologically isomorphic to a sub-
shift over the alphabet Σ.

Proof. Denote p = #Σ. Consider the following two cases:
a) the topological entropy h(X) of (X,S) is equal to ln p,
b) h(X) < ln p.

The case a) is trivial: the flow (X,S) is the full shift over Σ (use [D-G-S, The-
orem 20.11] and some standard arguments). Such flow contains fixpoints, thus
it admits no minimal topological factors except for the one point flow, hence our
theory does not apply.

Assume b). By a well known formula, we have

h(Y ) = lim
n

ln #Bn

n
,

where Bn denotes the collection of all blocks of length n occurring in Y . Because
h(Y ) = h(X) < ln p, an easy calculation shows that

(35) #Bn0
≤ pn0 − 1 and #Bn0+1 ≤ p

n0+1

for some sufficiently large n0. Let t0 be such that |Bt0 | ≥ n0 and |Ct0 | ≥ n2
0 (we

refer to the objects defined in the proof of Theorem 1). Then every Ct0 -block has
length at least n2

0. Every such long a block can be decomposed as a concatenation
of subblocks whose lengths are either n0 or n0 + 1. Fix one such decomposition
starting with a subblock of length n0 for each Ct0 -block, so that all Ct0 -blocks
of the same length are cut in the same places. This induces a decomposition of
all t0-trains of Y . The starting subblock of each t0-train consists of the initial n0

symbols of the locomotive Wt0 , hence is common for all t0-trains. By (35), there
exist 1-1 correspondences Ψ from Bn0

into all blocks of length n0 over the alphabet
Σ, and Ψ1 from Bn0+1 into all blocks of length n0 + 1 over Σ. Moreover, there
remains at least one block B0 of length n0 over Σ unused as an image by Ψ.

The desired topological isomorphism between (Y, S) and a subshift over Σ is
obtained by a code replacing each subblock of each t0-train in Y by its image
by Ψ or Ψ1 (depending on whether its length is n0 or n0 + 1), except for the
starting subblock of each t0-train which we replace by B0. It is clear that the
above code yields a continuous map commuting with the shift. Its being injective is
immediate: we can determine the positioning of the t0-trains in the preimage from
the positioning of the occurrences of B0 in the image. Then, knowing the lengths of
consecutive t0-trains, we can determine where they are cut into subblocks. Finally,
reversing Ψ and Ψ1, we can determine the preimage. �
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We take the opportunity to make a general comment concerning block codes. In
1969 G. Hedlund proved that every factor map π : X → Z between two subshifts
(the first over Σ, the second over Λ) is induced by a block code i.e., there exists a
map Π : Σ2r+1 → Λ such that π(x) at the position n is equal to Π(x[n− r, n+ r]).
The parameter r is often called the radius of the code. Because all the codes
appearing it this paper have a slightly different form, it might be interesting to see
how general this form is.

Definition 1. By a length preserving code we shall mean any function Ψ defined on
some finite collection B of blocks over Σ into the blocks over Λ such that |Ψ(B)| =
|B|, for each B ∈ B.

We say that a map π between two subshifts (X,S) and (Z, S) is induced by a
length preserving code if there exists a length preserving code Ψ, such that
• each x ∈ X can be decomposed in a unique way as an infinite concatenation of
blocks belonging to the domain of Ψ, and
• z = π(x) coincides with the sequence obtained from x by replacing all blocks in
the above concatenation by their images by Ψ.

It is not hard to see that any map induced by a length preserving code is contin-
uous and commutes with the shift transformation, hence is a factor map. It is not
true that every factor map between two subshifts is induced by a length preserving
code. However, we shall now prove that it is always so, whenever the factor is
minimal. A similar result has been obtained for factor maps between Toeplitz flows
in [D-K-L, Theorem 1].

Proposition 1. Let π : X → Z be a factor map between two subshifts, (X,S) and
(Z, S), where (Z, S) is minimal and non-periodic. Then π is induced by a length
preserving code Ψ.

Proof. Let Π be the classical block code inducing π and let r denote its radius.
Let B be a block of length at least 2r, having non-overlapping occurrences in Z
(see Lemma 1). For each x ∈ X let (ni(x))i∈Z denote the starting positions of the
consecutive occurrences of B in π(x). Consider the family B of blocks occurring
in X as x[ni(x) + r, ni+1(x) + r) for some x ∈ X and i ∈ Z. Since B occurs
syndetically in Z, this family is finite. To define the length preserving code Ψ on B
we first apply the block code Π, by which we can determine all letters of the image
blocks except for the extreme r positions at both ends. But we know that each of
these image blocks ends with the initial subblock of B of length r and starts with
the remaining part of B of length |B| − r ≥ r. This covers the missing r positions
on both sides, thus the image blocks are fully determined. It is obvious that the so
obtained length preserving code Ψ induces π, as desired. �

The general case

The construction used in the proof of Theorem 1 can be easily generalized to the
case where (X,TX) is an arbitrary (non-symbolic) flow. Temporarily, we maintain
the assumption that (Z, S) is a subshift. Clearly, the resulting almost 1-1 extension,
(Y, TY ), will no longer be symbolic.

Theorem 2. Let (X,TX) be an arbitrary extension of a minimal non-periodic
subshift (Z, S). Then (X,TX) is Borel∗ isomorphic to some minimal almost 1-1
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extension (Y, TY ) of (Z, S). The corresponding diagram commutes (see formulation
of Theorem 1).

Proof. We represent (X,TX) as a subshift over the infinite alphabet X , i.e., we
identify each x ∈ X with the sequence (..., T−1

X (x), x, TX(x), T 2
X(x), ...) ∈ XZ. Ob-

viously, such representation is a topological isomorphism. From this point we repeat
the whole proof of Theorem 1, which leads to obtaining (Y, S) as a subshift over the
infinite alphabet Ξ = X × (X ∪ {�})×Λ. The minor differences are the following:
• Before we start, we fix a decreasing to zero sequence (εt). The number of all pos-
sible regular t-trains is infinite, nevertheless, by compactness of φt(X), there exists
a finite collection Tt of regular t-trains, such that every regular t-train is close to
some of the t-trains from Tt, where by “close” we understand that the distance at
each coordinate is less than εt. In (5) we define rt = #Tt.
• In (14) we demand that every t-train from Tt occurs in Wt+1.
• In the proof of minimality of Y , we observe that B is εt-close to a block occurring
syndetically in φt+2(x).
• In (27) we add that for each n ∈ N the sequence (xt(n)) is eventually constant.
A bit more complicated is the adaptation of the part of the proof concerning the
homeomorphism of measures. We only outline the most essential changes:
• In (32) the cylinders UB are replaced by an appropriate countable family of con-
tinuous functions, each depending on finitely many coordinates.
• In (33) frequencies are replaced by appropriate averages.
From that point we conduct analogous estimations of the averages calculated for
the chosen functions. �

The next case which we shall discuss is where (Z, TZ) is a non-symbolic flow, but
it is strictly ergodic. In fact, most of the known examples of non-uniquely ergodic
minimal flows are obtained as extensions of certain strictly ergodic flows. In this
situation we can apply our theory by finding a “symbolic replacement” for (Z, TZ).
We begin with the finite entropy case.

Theorem 3. Let (Z, TZ) be a strictly ergodic non-periodic flow having finite topo-
logical entropy and let (X,TX) be an extension of (Z, TZ). Then the assertion of
Theorem 2 holds. If (X,TX) is symbolic then so is (Y, TY ).

Proof. Applying to (Z, TZ) a theorem of Denker-Keane [D-K, Theorem 20], we can

construct a subshift (Z̃, S) and a finitary isomorphism between these flows, i.e., a

continuous injective map ϕ : Z ′ → Z̃ with continuous inverse, where Z ′ is a residual
full subset of Z. Moreover, by [D-K, Corollary 8], (Z̃, S) is strictly ergodic, thus ϕ
is also a Borel∗ isomorphism.

We will introduce a system of commutative diagrams involving two additional
intermediate flows. We will use the method of obtaining topological extensions
by joinings. In all product spaces the actions are defined coordinatewise and we
will omit their notation. Therefore the flows will be denoted by the corresponding
spaces only. Define X ′ = π−1

X (Z ′) and note that X ′ is a full set in X .

a) Let X̃ = {(x, ϕ ◦ πX(x)) : x ∈ X ′} ⊂ X × Z̃.
The projection π1 on the first coordinate provides a Borel∗ isomorphism between
X̃ and X . To see this, note that π−1

1 (X ′) is a full set in X̃, and consider an

element (x, z̃) of this set, i.e., such that x ∈ X ′. By the definition of X̃, there
exists a sequence (xn) of elements of X ′ such that (xn, ϕ ◦ πX(xn)) → (x, z̃). By
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continuity of ϕ on Z ′, we have z̃ = ϕ ◦ πX(x). We have proved that π1 is 1-1 on
the full set π−1

1 (X ′). Continuity of the adjacent map π∗
1 follows immediately from

the continuity of π1.

We can now apply our Theorem 2 to the extension π2 : X̃ → Z̃ (or Theorem 1 – if

X is a subshift, because then X̃ is obviously also a subshift). Let Ỹ , πỸ : Ỹ → Z̃,

and φ̃ : X̃ → Ỹ denote the obtained flow, the almost 1-1 extension, and the Borel∗

isomorphism, respectively.

b) Let Y = {(ỹ, z)) : z ∈ Z ′, πỸ (ỹ) = ϕ(z)} ⊂ Ỹ × Z.

Now, π1 provides a Borel∗ isomorphism between Y and Ỹ (use the same argument

as for X̃ and X , but this time with continuity of ϕ−1). On the other hand, π2

provides an almost 1-1 extension of Z. Indeed, if z ∈ Z ′ is such that ϕ(z) has a
one-point fiber by πỸ , then z has a one-point fiber by π2 (similar argument again).
It could be proved that so defined Y is minimal, but we can avoid proving this by
letting Y be a minimal subset of the previously defined set. By minimality of Ỹ and
Z, both projections remain onto, hence their required properties remain satisfied.

X̃
φ̃
←→ Ỹ

π1↓ ↘
π2 π

Ỹ↙ ↑π1

X Z̃ Y

πX
↘ ↑ϕ↙π2

Z

Once this is done, our assertion holds for X , Z and Y with φ defined on (an

appropriate subset of) X as π−1
1 ◦ φ̃ ◦ π−1

1 (see diagram above). �

A similar method involving infinite products leads to the following

Theorem 4. Theorem 2 holds also if (Z, S) is a subshift over the countable alphabet
N ∪ {∞} (this time we do not assume strict ergodicity).

Proof. Let z ∈ Z. For each n ∈ N denote by zn the sequence over the finite alphabet
{1, 2, . . . , n} obtained from z by replacing all letters of the alphabet N∪{∞} which
are larger than n (including ∞) by n. Let Zn be the corresponding factor of Z.

If for each n, Zn is periodic, then Z represents the rotation of a compact mono-
thetic group (so called p-adic adding machine, see next section on Toeplitz flows).
Such flow has topological entropy zero and is strictly ergodic. This case has been
dealt with in Theorem 3.

So suppose the flows Zn are non-periodic (for n sufficiently large). We can apply
Theorem 2 to X and each Zn, which produces a sequence of flows Yn. The flow
Y will be defined as an appropriate joining within the infinite product

∏
Yn. We

omit the details of the definition of Y , and proving its required properties. The
arguments are similar to those used for joinings in the proof of Theorem 3. �

Theorem 5. Theorem 3 holds also if (Z, TZ) is strictly ergodic and has infinite
entropy.

Proof. By [D-K, Theorem 18], we can find a subshift (Z̃, S) over the countable al-
phabet N∪{∞}, finitarily (and hence Borel∗) isomorphic to (Z, TZ). The assertion
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follows by the same proof as in Theorem 3, in which Theorem 4 is applied instead
of Theorem 2. �

The problem with generalizing our Theorem 3 (and 5) to the non-strictly ergodic

case lies in finding an appropriate symbolic representation (Z̃, S) for (Z, TZ).

Question. Let (Z, TZ) be a minimal non-periodic topological flow with finite topo-

logical entropy. Does there exist a subshift representation ϕ : (Z, T ) → (Z̃, S)
which is both a Borel∗ isomorphism and a universally (for each invariant measure)
finitary isomorphism?

Comment. The starting point in the quoted construction of [D-K] is finding a
Rohlin tower with an open base U such that its boundary δU is a null set. This
is done for a single invariant measure. It can also be easily done in case of at
most countably many ergodic measures. But even then we don’t know whether the
obtained universally finitary isomorphism induces a continuous map on invariant
measures (this problem will not appear in the case of finitely many ergodic measures,
because any affine map defined on a finite-dimensional simplex is continuous). Also
without strict ergodicity there is a danger that some unwanted invariant measures
might be supported by Z̃ \ Z̃ ′.

Remark 1. Theorem 1 can be also proved for Z2-actions. A proof based on the
same principles works in the case, where both horizontal and vertical shifts on Z
are minimal non-periodic. As a consequence, theorems analogous to Theorems 2
through 5 are valid. Our Theorems 2 through 5 may be useful in producing concrete
examples of topological dynamical systems with prescribed properties, for instance,
as was done in [B-G-K].

Characterization of Toeplitz flows

Toeplitz sequences have been introduced in 1969 by Jacobs and Keane in [J-K],
although particular examples were known much earlier (see e.g. [Ga-H], [O], [G-H]).
Some general topological dynamical properties such as minimality and strict ergod-
icity (for the regular case) were established in these earlier works. The maximal
equicontinuous factor was identified in [E] (1970) for regular Toeplitz flows. Topo-
logical characterization of all Toeplitz flows as minimal almost 1-1 symbolic ex-
tensions over the so called p-adic adding machines is stated (without a proof) in
[M-P] (1979). Because of the importance of this characterization for our further
investigations, a simple proof of this fact is presented below.

Since 1984 there appeared various constructions of Toeplitz flows exhibiting a
variety of topological and, to some extend, spectral invariants, such as the set of
invariant measures, topological centralizer, topological entropy, topological coales-
cence, point spectrum (see e.g. [Wi], [D1,2,3], [B-K1,2], [D-I], [D-K-L], [I-L], [I],
[D-L]).

Much less was known about possible realizations within this class of measure-
theoretic invariants such as rank, covering number, spectral multiplicity or order
of the quotient group (of the measure-theoretic centralizer). However, multiple
realizations of these invariants were obtained in a larger class of flows including
Morse sequences and other extensions over the rational point spectrum (see e.g.
[L], [F-K-M], [K-L]).

Our original desire, motivated by several discussions with some other mathe-
maticians interested in this subject, was to fully characterize Toeplitz flows from
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the measure-theoretical point of view. The missing link was a “symbolic version”
of the Furstenberg-Weiss theorem. In view of the results of the preceding sections,
such characterization is now possible even at the level of a Borel∗ isomorphism.

Definition 2. [J-K] A Toeplitz sequence is a non-periodic element x ∈ ΣZ such
that

(∀n ∈ Z)(∃p ∈ N)(∀k ∈ Z) x(kp+ n) = x(n),

i.e., each position in x is a periodic position.

A subshift (X,S) is called a Toeplitz flow if it is the orbit-closure of some Toeplitz
sequence. Toeplitz flows are well known to be minimal.

The topological maximal equicontinuous factor (see e.g. [A] for the definition)
of a Toeplitz flow is known to have the form of a so called p-adic adding machine
(Gp, 1) (see e.g. [Wi]). One of the possible ways of viewing the group Gp is the
following: its elements are sequences (jt)t≥1 ∈

∏

t≥1{0, ..., pt − 1} such that for

each t, jt+1 ≡ jt mod pt, where (pt)t≥1 is a fixed increasing sequence of positive
integers satisfying pt|pt+1. Addition is defined coordinatewise modulo pt. Then
1 := (1, 1, 1, ...) is a topological generator of the compact monothetic group Gp (by
the same letter 1 we also denote the rotation by the generator 1 in Gp, see [H-R] for
more details on Gp). We shall view Gp as a compactification of (Z,+) by writing k
instead of k1 (multiplication by integers is well defined in Gp). Recall that the sets
ptGp form a base for the topology at 0 in Gp. The flow (Gp, 1) is strictly ergodic
and the invariant measure is the Haar measure λ.

Theorem 6. [M-P] A subshift (X,S) is a Toeplitz flow if and only if it is a minimal
almost 1-1 extension of some p-adic adding machine.

Proof. If (X,S) is a Toeplitz flow then the required properties are fulfilled for the
maximal equicontinuous factor (Gp, 1) of (X,S) (see [Wi]). Conversely, suppose
(X,S) satisfies the above conditions with some (Gp, 1) and let x be a one-point
fiber of the factor πX : X → Gp. We will show that x itself is a Toeplitz sequence
(by minimality, this will complete the proof). So suppose the converse, i.e., that
there exists a non-periodic position n in x. In particular for each t we can find a
kt such that

x(ktpt + n) 6= x(n).

Choosing if necessary a convergent subsequence we define

x′ = lim
t→∞

Sktptx.

Of course, x 6= x′, because they differ at the position n. On the other hand,

πX(x′) = lim ktpt + πX(x),

by the properties of πX . But ktpt converge to 0 in Gp, from which it follows that
πX(x′) = πX(x), a contradiction. �

The above characterization allows to apply the previously obtained theorems on
almost 1-1 extensions:
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Theorem 7. Any symbolic topological extension (X,S) of a p-adic adding machine
is Borel∗ isomorphic to a Toeplitz flow.

Proof. Use Theorem 3. �

Remark 2. A similar passage (in a very particular case) can be found in [D2],
where a Borel∗ representation in form of a Toeplitz flow is constructed for a (non-
transitive) flow obtained as a closure of a union of many Toeplitz flows factoring to
the dyadic integers.

Remark 3. The statement reversing Theorem 7 is false. For example there exists a
strictly ergodic flow having an adding machine as a measurable but not topological
factor. Such flow is measure-theoretically isomorphic to a Toeplitz flow (see theorem
below). By strict ergodicity, this isomorphism is Borel∗.

Finally, we state the measure theoretic characterization of Toeplitz flows, as a
consequence of which, all the measure-theoretic information that was known for
systems factoring to some p-adic adding machines is now known to be realizable
within the class of Toeplitz flows. To pass from measure preserving transforma-
tions to topological flows we apply a strengthening of the famous Jewett-Krieger
Theorem, due to Weiss (1985), in which the entire diagram of a measure-theoretical
factor is replaced by a strictly ergodic topological model.

Theorem 8. An ergodic dynamical system (X,µ, TX) is measure-theoretically iso-
morphic to a strictly ergodic Toeplitz flow if and only if it has finite entropy and its
set of eigenvalues contains infinitely many rationals.

Proof. Clearly, each Toeplitz flow has finite entropy and it admits infinitely many
rational eigenvalues, and so does every dynamical system (X,µ, TX) measure-
theoretically isomorphic to a Toeplitz flow.

For the converse, first note that having infinitely many rational eigenvalues is
equivalent to having a p-adic adding machine (Gp, λ, 1) as a measure-theoretic fac-
tor. By a theorem of Weiss [W], (X,µ, TX) is measure-theoretically isomorphic to

some topological extension (X̃, µ̃, S), of (Gp, 1), where (X̃, S) is a strictly ergodic

subshift. By Theorem 7, (X̃, S), is Borel∗ (hence measure-theoretically) isomorphic
to a strictly ergodic Toeplitz flow. �
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