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Abstract. Given an arbitrary countable subgroup σo of the torus, containing infinitely many ra-
tionals, we construct a strictly ergodic 0-1 Toeplitz flow with pure point spectrum equal to σo. For
a large class of Toeplitz flows certain eigenvalues are induced by eigenvalues of the flow Y which can
be seen along the aperiodic parts.

Introduction

In this paper we continue the study of Toeplitz flows initiated in 1984 by S. Williams in her work
[W]. Toeplitz sequences have been known earlier (e.g. [O], [G-H], [J-K]), but it is the construction
of Williams that is exploited in most of later works on Toeplitz sequences (e.g. [B-K1], [D], [B-
K2], [I-L], [D-K-L], [I]). Spectral properties of Toeplitz flows have been studied in [I-L] and [I].
In this note we develop the method introduced by A. Iwanik in [I]. Each eigenvalue γ obtained
there satisfies certain equation formulated in Section I of this paper as (3). In [I], however, this
equation remains unsolved, and an irrational γ is obtained by constructing uncountably many
Toeplitz flows with different eigenvalues.

We have succeeded in solving the equation (3) simultaneously for an arbitrary countable set
of γ’s. This enables us to prove the existence of strictly ergodic Toeplitz flows with an arbitrarily
preset pure point spectrum containing infinitely many rationals.

Section I contains slightly modified formulations of the results of [I]. We rid the constructions
of technical details used in [I] to produce uncountably many sequences. For a large class of
Toeplitz flows we identify certain eigenvalues not arising from the maximal uniformly continuous
factor. We also adapt the cohomology statement of [I] to the countable product of tori.

Section II is devoted to presenting how equation (3) can be solved for an arbitrary countable
set of γ’s.

In Section III we put the previous theorems together to obtain the desired Toeplitz flow with
the preset spectrum. Attention is paid to strict ergodicity.
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Preliminaries

Let (X,µ, T ) be a standard probability measure preserving dynamical system. The point

spectrum σo(T ) is the set of all eigenvalues of the induced unitary operator UT on L2(µ). We say
that the dynamical system has pure point spectrum, if σo(T ) supports the entire spectral measure
of UT . If in addition µ is ergodic, then σo(T ) is a countable subgroup of the torus and (X,µ, T )
is measure-theoretically isomorphic to (G, λ, g), where G is the dual compact monothetic group
to σo(T ) with Haar measure λ and rotation by a generator g.

A Toeplitz sequence is a non-periodic element η ∈ ΣZ (Σ a finite set), such that

(∀n ∈ Z)(∃p ∈ N)(∀m ∈ Z) η(mp+ n) = η(n)

(see [W] for a general reference on Toeplitz sequences). For each Toeplitz sequence there exists a
sequence of periods (pj)j∈N with pj |pj+1 for each j, defining a partition of Z into pj-periodic sets
Zj along which η is pj-periodic but not periodic with any smaller period. Every such sequence
(pj) is called a period structure for η. Each subsequence of (pj) is again a period structure for η.
A Toeplitz sequence is called regular if the sum d of the densities in Z of Zj equals 1.

It is known that the orbit closure O(η) of a Toeplitz sequence η is minimal for the shift
transformation S. Now, if η is regular, then (O(η), S) is strictly ergodic i.e., in addition to
minimality it carries a unique invariant (probability) measure. In this case, almost all elements
of O(η) are also Toeplitz sequences. In the non-regular case each of the (possibly many) invariant
measures is carried by the setW (η) of (non-Toeplitz) elements with doubly infinite aperiodic part.
We define

Y (η) = {y(ω) : ω ∈ W (η)},

where y(ω) is the sequence to be read along the aperiodic part of ω (position zero of y(ω) is
defined by the smallest positive position in the aperiodic part of ω). Of course, Y (η) ⊂ ΣZ

is shift-invariant. Since W (η) is not closed, in the general case we have no guarantee that
{y(ω) : ω ∈ W (η)} is itself a closed set. However, in the further constructions of this paper it is
the case, so the closure in the above definition can as well be omitted.

The maximal uniformly continuous factor of (O(η), S) appears to be topologically isomorphic
with the unit-rotation on the group of p-adic integers, where p stands for (pj), a period structure
of η. If Gp is viewed as a compactification of Z, then by Cj we denote the closure of Zj . The
sets Cj are disjoint and each of them is a union of some number lj of cosets of the form Hj + k,
where Hj = pjGp, 0 ≤ k < pj. We define

C =
˙⋃

j≥1

Cj . (1)

Note that

d =
∑

j≥1

lj
pj

= µp(C),

where µp is the Haar measure on Gp. (Practically, we construct Toeplitz sequences by induction,
filling in the step j some lj yet unfilled positions of the interval [0, pj), and repeating the pattern
with the period pj).

There is a natural Borel measurable mapping ψ fromW (η) into the productGp × Y (η) sending
ω to (h, y), where h is the image of ω by the maximal uniformly continuous factor, and y = y(ω).
The shift S then corresponds to a piecewise power skew product transformation

SC(h, y) = (h+ 1, Sh/∈Cy),
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where “h /∈ C” denotes the logical 0-1-value, S1 = S and S0 = Id (the identity map). If η
is a Toeplitz sequence “constructed from a subshift Y ”, then Y (η) = Y , and for each invariant
measure ν on Y , there exists an invariant measure λ on (O(η), S) such that ψ becomes a measure-
theoretical isomorphism between (O(η), λ, S) and (Gp × Y, µp × ν, SC) (see [W, Theorem 4.5]).
In the strictly ergodic case we need not refer to [W]. Sufficient is the following easy observation:

Lemma 1. If the piecewise power skew product (Gp×Y (η), SC) is strictly ergodic then (O(η), S)
is strictly ergodic and ψ is a measure-theoretical isomorphism between these flows.

Proof. The set W (η) carrying all invariant measures of (O(η), S) is mapped by ψ in a 1-1 way
onto an invariant subset of Gp × Y (η). By strict ergodicity, this must be a full measure subset
for the unique invariant measure. Thus W (η) carries a unique invariant measure, too. �

Inspired by [I], we will assume that for each j ∈ N

either Cj ⊂ Hj ∪ (Hj + 1) ∪ · · · ∪ (Hj + rj − 1)

or Cj ⊂ (Hj − rj) ∪ (Hj − rj + 1) ∪ · · · ∪ (Hj − 1)

for a sequence (rj) such that
∑

j≥1

rj
pj

<∞. (2)

As not hardly seen, (2) already implies non-regularity of η. Nevertheless, we need the flow
(O(η), S) to be strictly ergodic, in order to insure that the measure-theoretical notions do not
depend on the choice of the invariant measure (except for Theorem 1, which holds separately for
each invariant measure ν on Y (η)).

I. Iwanik‘s equation

We will view the torus T additively, as parameterized by the interval [− 1
2 ,

1
2 ). It has to be

noted that in this setting the expression nx
m for x ∈ T (m > n, some positive integers) does not

have a definite meaning, so we shall use
(nx)T
m

to indicate that dividing by m is applied to the element of T arising from nx. Observe that
then the above function of x is linear on each interval along which (nx)T ∈ (− 1

2 ,
1
2 ). In other

expressions we can safely skip the indicator “( )T”. The absolute value function is also applied
to the element of T in the above parameterization, so that for x ∈ T, |nx| is the distance of the
real number nx from the nearest integer. In our constructions complex numbers belonging to the
following set (for a given Toeplitz sequence) will play the crucial role:

A = {x ∈ T :
∑

j≥1

|ljx| <∞},

where (lj) is as described earlier for Toeplitz sequences. It is worth noticing (and not hard to see)
that the set A has always Lebesgue measure zero. It can be countable (e.g. for (lj) a geometric
sequence), but if lj increases suffitiently quickly then A contains a Cantor set.

Note that now a T-valued function f is an eigenfunction pertaining to an eigenvalue α ∈ T if
f(Sω) = f(ω) + α.
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Theorem 1. Let (O(η), λ, S) be a Toeplitz flow measure-theoretically isomorphic via the map ψ
to the skew product (Gp × Y (η), µp × ν, SC) for some invariant measure ν on Y (η). Assume also

(2). Let α ∈ A be an eigenvalue for (Y (η), ν, S) corresponding to an eigenfunction f : Y (η) → T.

Then

γ(α) = α−
∑

j≥1

(ljα)T
pj

(3)

is an eigenvalue for (O(η), λ, S). The corresponding eigenfunction has the form f̃(ω) = g(h) +
f(y), where (h, y) = ψ(ω) and g : Gp → T.

Proof. We need to construct the function g : Gp → T. Fix j ∈ N. Recall that Cj is a union of
lj cosets Hj + k. Now, for h ∈ Hj we define

gj(h) = 0 (4)

and

gj(h+ k + 1) =







gj(h+ k) − (ljα)T
pj

if h+ k /∈ Cj

gj(h+ k) − (ljα)T
pj

+ α if h+ k ∈ Cj

(5)

for k = 0, 1, . . . , pj − 1. Observe that the formula (5) applied to k = (pj − 1) yields

gj(h+ pj) = gj(h) − pj
(ljα)T
pj

+ ljα = 0,

which agrees with (4), since Hj + pj = Hj . Also note that h + k /∈ Cj for pj − rj consecutive
values of k either ending with pj − 1 or starting with 0, and hence gj differs from zero at the
corresponding cosets by at most

|(pj − rj)
(ljα)T
pj

| ≤ |ljα| ,

which is summable over j since α ∈ A. The remaining part of Gp has measure
rj

pj
, also assumed

in (2) to be a summable sequence. It is now obvious, that the function

g(h) =
∑

j≥1

gj(h)

is well defined as a convergent series on a set of measure 1 in Gp. On the same set, by (5),

g(h+ 1) =







g(h) −
∑

j≥1
(ljα)T

pj
if h /∈ C

g(h) −
∑

j≥1
(ljα)T

pj
+ α if h ∈ C,

(6)

because in the second case h ∈ Cj for exactly one j.

Finally, as announced, we define f̃(ω) = g(h) + f(y) and we check

f̃(Sω) = g(h+ 1) + f(Sh/∈Cy)

=







g(h) −
∑

j≥1
(ljα)T

pj
+ f(Sy) if h /∈ C

g(h) −
∑

j≥1
(ljα)T

pj
+ α+ f(y) if h ∈ C

= f̃(ω) + α−
∑

j≥1

(ljα)T
pj

,

almost everywhere for the product measure, as desired. �
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Note that if α is rational then α ∈ A implies (ljα)T = 0 starting from some jo. Thus γ(α) is
rational, too.

The equation (3) along with the function g of Theorem 1 can be also used to produce measure-
theoretical isomorphisms by cohomology between group extensions over Gp by T∞, where T∞

denotes the product of countably many tori. This will be used later for further investigations of
Toeplitz flows.

We fix the sequence (pj) (and by that the group Gp) and an open set C ⊂ Gp represented by
the formula (1) and satisfying (2). The sequence (lj) and the set A are therefore also determined.
We do not need to further specify the Toeplitz sequence η.

Theorem 2. Let α = (αi)i∈N with αi ∈ A for each i. Let γi = γ(αi), and let γ = (γi)i∈N. If

1, γ1, γ2, . . . are rationally independent then the group extension (Gp × T∞, TC), where

TC(h,x) = (h+ 1,x + α
h/∈C),

is strictly ergodic and measure-theoretically isomorphic to the rotation of Gp×T∞ by the generator

1 × γ.

Proof. As in [I], we show that the cocycle α
h/∈C is cohomologous to the constant cocycle γ. To

this end we check that the cohomology function g : Gp → T∞ is given by

g(h) = (gi(h))i∈N ,

where gi now denotes the function g constructed as in the proof of Theorem 1 for αi and γi. In
fact, by the property (6) of each gi, we have

(αh/∈C + g(h+ 1) − g(h))i

=







αi −
∑

j≥1
(ljαi)T

pj
if h /∈ C

−
∑

j≥1
(ljαi)T

pj
+ αi if h ∈ C

= γi ,

µp-almost everywhere, which is the cohomology equation.
Since the rotation on Gp × T∞ is ergodic, so is the group extension TC , hence, by a theorem

of Furstenberg [F], the later is also strictly ergodic. �

The group extension (Gp × T∞, TC) carries at least as many invariant measures as (T∞,α)
(corresponding product measures are TC -invariant), hence we immediately deduce that

Corollary 1. With the assumptions of Theorem 2, the numbers 1, α1, α2, . . . are rationally in-

dependent. �

(The above fact can be also deduced for αi’s belonging to A directly from (3). The assumption
(2) is not essential.)

Remark 1. With a slight modification of the set C, Theorem 2 also holds if we add one (finitely
many reduces to one) rational number α0 = 1

n , where n is relatively prime with all the pj ’s. The
group T∞ is then replaced by Zn × T∞ (Zn is viewed as a subgroup of T). Next, all lj ’s must
be chosen multiples of n, hence we obtain γ0 = α0. The cohomology function on the added axis
is then g0 = 0. The ergodicity and strict ergodicity are maintained.
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II. Solving Iwanik‘s equation

Let the group Gp be given. By p-rationals we will mean the elements of the spectrum of the
group rotation (Gp, 1). For technical reasons we need to introduce a notation for the number of
“unfilled positions”. And so, for given sequences (pj) and (lj) we define

mj = pj(1 −
∑

k≤j

lk
pk

).

Let (δj) be a summable sequence with 0 < δj <
1
2 for each j.

Theorem 3. For every sequence (γi) of elements of T there exist

(a) increasing sequences (lj) and (pj) with (pj) defining Gp, and such that for each j ∈ N

lj is a multiple of mj−1, and lj <
δjpj

pj−1
, (7 for j)

(b) a sequence (βi) of p-rationals, and

(c) a sequence (αi) such that αi ∈ A and γ(αi) = γi + βi for each i ∈ N.

Proof. Fix a sequence (εj) of positive numbers, such that

ε1 <
1

6
and

∑

j>k

εj < εk (k ≥ 1). (8)

We shall inductively find the numbers lj and pj satisfying (7 for j), define βj , and construct a
triangular array (αi,j)j∈N,1≤i≤j+1 such that for every pair i, j with i ≤ j hold

αi,j −
∑

k≤j

(lkαi,j)T
pk

= γi + βi , (9 for j)

and
|lkαi,j | < 2εk + εk+1 + · · · + εj for all 1 ≤ k ≤ j. (10 for j)

Step 1

Let β1 = 0 and find l1 ≥ 1 such that
|l1γ1| < ε1

(this is possible for both rational and irrational γ1). Then let p1 be an element of the sequence
defining Gp, such that l1 < δ1p1, as in (7 for 1) (assign p0 = m0 = 1). Observe that for
x ∈ [γ1 −

ε1
l1
, γ1 + ε1

l1
] we have (l1x)T ∈ (−2ε1, 2ε1) ⊂ (− 1

2 ,
1
2 ), so that the function

x−
(l1x)T
p1

increases linearly (with slope 1 − l1
p1

) from a value < γ1 to a value > γ1 (seen by an elementary

calculation). Thus, there exists an α1,1 ∈ [γ1 −
ε1
l1
, γ1 + ε1

l1
] with

α1,1 −
(l1α1,1)T

p1
= γ1. (9 for 1)
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Of course, we have
|l1α1,1| < 2ε1. (10 for 1)

Step j+1

Throughout description of this step j ≥ 1 has a fixed value, while i and k range between 1 and j
(later we also admit i = j + 1 and k = j + 1). Suppose we have already defined all the numbers
βi, lk, pk and αi,j , so that the requirements on lk and pk of (7 for k) as well as the conditions
(9 for j) and (10 for j) are satisfied. First notice that

|lkx| < 2εk + εk+1 + · · · + εj (11)

holds for each k if x is in some open interval Uj around 0. In particular, by (8), (lkx)T ∈ (− 1
2 ,

1
2 )

thus the function

x−
∑

k≤j

(lkx)T
pk

increases linearly (with positive slope 1 −
∑

k≤j
lk
pk

) on Uj . So, it is possible to find xo ∈ Uj and

a p-rational βj+1, with

xo −
∑

k≤j

(lkxo)T
pk

= γj+1 + βj+1. (12)

We let αj+1,j = xo, and so, by (11) and (12), the conditions (9 for j) and (10 for j) are additionally
satisfied with i = j + 1.

Now, we repeat the procedure of step 1. Find lj+1 > lj , a multiple of mj, such that

|lj+1αi,j | < εj+1 for all 1 ≤ i ≤ j + 1 (13)

(this is possible regardless of the rational independence of the αi,j ’s), and then pick pj+1 from

the sequence defining Gp such that lj+1 <
δj+1pj+1

pj
, as required in (7 for j+1).

In the sequel i denotes a fixed integer between 1 and j + 1.
For

x ∈ [αi,j −
εj+1

lj+1
, αi,j +

εj+1

lj+1
]

we have, by (10 for j),

|lkx| < 2εk + εk+1 + · · · + εj + εj+1 for all 1 ≤ k ≤ j. (14)

Next, by (13), we also have
|lj+1x| < 2εj+1

on the same interval, which extends (14) to k = j + 1. As before, by (8), the function

x−
∑

k≤j+1

(lkx)T
pk

increases linearly (with positive slope 1 −
∑

k≤j+1
lk
pk

) on the above interval, assuming at the

endpoints values on opposite sides of γi + βi (easily calculated using (9 for j)) . Hence, there
exists in this interval an αi,j+1 satisfying

αi,j+1 −
∑

k≤j+1

(lkαi,j+1)T
pk

= γi + βi. (9 for j+1)

Of course, by (14), we also have

|lkαi,j+1| < 2εk + εk+1 + · · · + εj+1 for all 1 ≤ k ≤ j + 1. (10 for j+1)
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This completes the induction.
It follows from the construction, that for fixed i the sequence (αi,j)j≥i is Cauchy, so

αi = lim
j
αi,j

exists. We easily notice that (10 for j) and (8) yield

|lkαi| ≤ εk +
∑

j≥k

εj < 3εk ,

and so αi ∈ A. Further, by a standard argument with separately estimating a tail of a series and
the corresponding finite sum, (9 for j) and (10 for j) imply that

γ(αi) = γi + βi,

as desired. �

III. Strictly ergodic Toeplitz flow

At first, we need to represent an ergodic rotation of the infinite-dimensional torus by a subshift.
Then we state our main result.

Lemma 2. Let (T∞,α) be ergodic. Then there exists a minimal 0-1-subshift (Y, S) and a con-

tinuous factor map φ : Y → T∞ invertible except on a subset F ⊂ T∞ of Haar measure zero.

Proof. Let 0 = a0 < a1 < a2 < · · · < 1
2 be a sequence in T. Next define

J =
⋃

n≥1

[an−1, an] × [an−2, an−1] × · · · × [a0, a1] × T × T× . . . .

It is easy to check that J and its complement constitute a topological generator for the flow
(T∞,α). The existence of a 0-1-subshift (Y, S) and a continuous factor map φ : Y → T∞

invertible except on the subset

F =
⋃

n∈Z

(∂J + nα)

follow from [D-G-S, sec. 15] (where ∂J denotes the boundary of J). Of course ∂J ⊂ [0, 1
2 ] ×

[0, 1
2 ]× [0, 1

2 ]× . . . is of Haar measure zero. By minimality of T∞, Y can be chosen minimal. �

Theorem 4. Let σo be a countable subgroup of T containing infinitely many rationals. Then

there exists a strictly ergodic Toeplitz flow (O(η), S) with pure point spectrum σo.

Proof. Every such subgroup σo is generated by the union of two sets: { 1
pj

: j ∈ N} and {γi : i ∈

I}, where pj|pj+1 for each j, I is either empty or finite or countable, and (if I nonempty) the
γi’s are rationally independent. We proceed with the proof for I = N, for the other cases see
Remark 2 below.

Let Gp be the group of p-adic integers defined by the sequence (pj). We now apply Theorem 3
(with some fixed sequence (δj)), to obtain a subsequence of (pj) (from now on (pj) will denote this
subsequence), and sequences (lj), (βi), (αi) with all the properties stated there. It is important
that the set { 1

pj
: j ∈ N}∪ {γi + βi : i ∈ I} still generates the same group σo. From now on γi

will denote γi + βi. These γi’s are rationally independent, too.



A NON-REGULAR TOEPLITZ FLOW 9

Let (Y, S) be a subshift (we will specify it a little later, at this moment we are more interested
in defining the set C). We apply a simplified (compared to [W]) inductive construction of the
Toeplitz sequence η from Y : in step j we fill the initial (for odd j) or terminal (for even j) lj yet
unfilled positions in [0, pj) using a block of length lj appearing in Y , and repeat this pattern with
period pj . Of course, this induction also defines the set C ⊂ Gp. Observe that the last inequality
of (7 for j) implies (2) (in our case rj ≤ ljpj−1).

So, we can use Theorem 2, by which (Gp×T∞, 1×γ), the monothetic group rotation with pure
point spectrum σo, is measure-theoretically isomorphic to the strictly ergodic (with the product
measure) group extension (Gp ×T∞, TC), where TC is defined by the cocycle α

h/∈C , and α is the
sequence of αi’s. By Corollary 1, the element α is a generator of T∞.

We can now specify the subshift (Y, S) to be the representation of (T∞,α) of Lemma 2. The
group extension (Gp × T∞, TC) is a topological factor, via Id×φ, of the piecewise power skew
product (Gp × Y, SC), and this factor map is invertible except on the set Gp × F of product
measure zero. Now, any two invariant measures on the skew product are mapped to the product
measure on the group extension (strict ergodicity), hence they may differ only on the preimage of
Gp ×F . This set however is of any such measure zero, so the difference is inessential. Thus strict
ergodicity of (Gp × Y, SC) is proved. Clearly, the map Id×φ provides also a measure-theoretical
isomorphism.

Finally, by the fact that each lj is a multiple of mj−1, we have Y (η) ⊂ Y (see proof of the
analogous inclusion in [W, Lemma 4.3]). By minimality of Y we have equality, and Lemma 1
says that (O(η), S) is strictly ergodic and measure-theoretically isomorphic to (Gp × Y, SC). �

Remark 2. For I finite the same proof applies (Theorem 2 works as well for finite products of
tori, in Theorem 3 put γi = 0 for i > #I). Any regular Toeplitz sequence over Gp works for
I = ∅.

Remark 3. By essentially the same proof, if n = p1 is relatively prime with qj =
pj

p1
for each

j ≥ 2, then we can obtain σo for a Toeplitz sequence over Gq. We let γ0 = 1
n and replace T∞ by

Zn × T∞. Theorem 2 applies by Remark 1 with α0 = γ0 (cf. [I, Theorem 2], which is identical
with applying this Remark to the case I = ∅ of Remark 2).
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