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Introduction

Morse flows form a class of group extensions over adding machines. In general,
if (X × G,Tφ, ν × λ) is an ergodic group extension of an ergodic transformation
(X,T, ν) (G compact abelian group with Haar measure λ and φ : X → G a cocycle)
then the space L2(ν × λ) decomposes into a product of Tφ-invariant subspaces L2

γ

where γ ranges over the group Ĝ dual to G, and L2
γ = {f ⊗ γ : f ∈ L2(ν)}.

If (X, T, ν) is a canonical factor of all its group extensions (e.g., if T has discrete
spectrum or if T is prime), and two such group extensions are metrically isomorphic,
then there exists a unique group automorphism v̂ of Ĝ, such that the induced
spectral isomorphism sends each L2

γ to L2
v̂(γ) ([N], [J-L-M]).

The following question is of our interest: suppose that two ergodic group exten-
sions of the same ergodic transformation are spectrally isomorphic, in this way that
the isomorphism sends each L2

γ to some L2
π(γ), where π is a permutation of Ĝ. We

will say that π governs the spectral isomorphism. Under what assumptions can π
be chosen a group automorphism?

The group extensions provided by Morse cocycles have two convenient properties:
the spectrum over each L2

γ is simple, and the corresponding spectral measure is
a generalized Riesz product. Such measures (if they are continuous) are either
equivalent or orthogonal. This implies, that every spectral isomorphism between
Morse flows is governed by a permutation π. If both cocycles have simple spectrum,
then π is unique, and we can ask whether or not it is a group automorphism. In
the opposite case we can ask about the existence of an automorphism among all
permutations governing spectral isomorphisms between the flows.

In this paper we characterize spectral isomorphism between Morse flows in terms
of combinatorial properties of the defining blocks (Theorem 4), and next we describe
two classes of Morse flows, where the answer to the automorphism problem is always
positive:
(1) G = Zp is the cyclic group of prime order,
(2) G is arbitrary finite and the cocycle has an additional property AS
(in both cases we assume that the cocycle has “bounded lengths”).

Due to the nature of the methods applied, we will concentrate mainly on the the
symbolic representation of Morse flows, rather than the cocycle setup.
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Basics

Let us now introduce the basic definitions and facts: as usually, Z denotes the
set of all integers, while N stands for {1, 2, 3, . . . }. T denotes the unit circle on the
complex plane, and z̄ is the conjugate of z.

Let G be a finite abelian group denoted multiplicatively, with unity 1. As usual,
by Ĝ we will denote the dual group of G, its elements (characters on G) will be
denoted by the letters γ, γ′, etc., while γ0 will denote the trivial character (i.e., the
unity of Ĝ).

By a block B of length n ∈ N over G we shall mean a finite sequence B =
(b0, b1, ..., bn−1) ∈ Gn. A sequence over G has the form B = (b0, b1, ...) ∈ GN. We
say that the block B is symmetric if bi = bn−1−i for each 0 ≤ i < n.

Definition 1. Let B be a block of length n over G. For 0 ≤ k ≤ n− 1 and g ∈ G
we denote

frB(k, g) =
1
n

#{i : 0 ≤ i ≤ n− k − 1, (bi)−1bi+k = g}.

Clearly, frB(0, g) = 1 if g = 1 and 0 for other elements g.

Definition 2. Let B = (b0, b1, ..., bn−1) ∈ Tn, (such B will be called a word). The
aperiodic autocorrelation function of B is defined on {0, 1, ..., n− 1} by

ΦB(k) =
1
n

n−k−1∑

i=0

bibi+k =
∑

z∈T
z frB(k, z).

Clearly, ΦB(0) = 1.

If A denotes a sequence over G (or T) then we define frA(k, g) (and ΦA(k)) as
the limit of frAn(k, g) (ΦAn(k)), where An is the initial block in A of length n. Of
course, there is no guarantee that such limits exist.

Let B = (b0, b1, ..., bn−1) and A = (a0, a1, ..., am−1) be two blocks over G. We
define their product as the block B ×A = (c0, c1, ..., cmn−1), by

cs+nt = bsat, 0 ≤ s < n, 0 ≤ t < m.

The above definition can be applied also to the case where A represents a sequence
over G.

The following lemma appears in many variants in the literature (see e.g. [D-L])
and it says that the autocorrelation function of a product of words depends only
on the autocorrelations of the component words.

Lemma 1. Let B = (b0, b1, ..., bn−1) and A = (a0, a1, ..., am−1) be two words (i.e.
blocks over T). For each 0 ≤ s < n and 0 ≤ t < m we have

ΦB×A(s + nt) = ΦB(s)ΦA(t) + ΦB(n− s)ΦA(t + 1),

(with the convention that ΦB(n) = 0). ¤

Remark 1. The same holds true if A represents a sequence over T for which the
autocorrelation function exists.
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Definition 3. Let (B1, B2, ...) be a sequence of blocks over a finite group G such
that, for each q ∈ N,
1) the length nq of Bq is at least 2, and
2) Bq(0) = 1.
The (one-sided, generalized) Morse sequence A determined by the sequence of blocks
(Bq) is defined as the coordinatewise limit of the words Aq = B1 × B2 × · · · × Bq

(convergence is granted by the condition Bq(0) = 1).

Let A be a Morse sequence over G. We define XA ∈ GZ as the set of all bi-
infinite sequences x such that every block appearing in x appears infinitely many
times in A. It is clear that XA is closed and σ-invariant where σ is the left shift
transformation

(σx)n = xn+1,

(x ∈ GZ). The subshift (XA, σ) will be called the Morse flow generated by A (or by
the sequence of blocks (B1, B2, ...)). Morse flows have been extensively studied for
their dynamical and spectral properties. We refer the reader to [G],[J],[K1],[K2],[K-
S],[M]. For us it is important to know the following five facts:

Fact 1. (see [I-L] or [M] for similar statements) A sufficient condition for a Morse
flow generated by a sequence of blocks (B1, B2, . . . ) to be strictly ergodic is that there
exists q0 ≥ 1 and εA > 0 such that for each q ≥ q0

frAq (1, g) > εA,

for all g ∈ G, where Aq denotes the Morse sequence defined by the “truncated”
sequence of blocks (Bq+1, Bq+2, . . . ). ¤

From now on we assume that our Morse sequence A satisfies the condition of
Fact 1. This implies in particular that for every nontrivial character γ ∈ Ĝ

lim sup
q

|Φγ(Aq)(1)| < 1− ξA.

for some ξA < 0.

Remark 2. The above is a natural requirement and in most papers on Morse flows
this or similar assumptions are made to ensure ergodicity of the flow and continuity
of the interesting part of the spectrum. Our condition also ensures that the flow
does not reduce to a Morse flow over a subgroup of G.

For spectral description of the Morse flow we need to consider the Hilbert space
L2 = L2(νA), where νA is the unique invariant measure on XA.

Fact 2. We have the following decomposition

L2 =
⊕

γ∈Ĝ

L2
γ ,

where L2
γ is the σ-invariant subspace of L2 defined by

L2
γ = {f ∈ L2 : f(gx) = γ(g)f(x) for each g ∈ G and x ∈ XA}

(gx is obtained by multiplying all entries of x by g). Moreover, the spectrum of σ
on each L2

γ is:



4 T. DOWNAROWICZ, J. KWIATKOWSKI, Y. LACROIX

- simple,
- discrete, if γ = γ0,
- continuous, for nontrivial characters.
The spectral type of σ on L2

γ with γ 6= γ0 is the same as that of the spectral measure
µ(A,fγ) (µ(A,γ) for short) of the function fγ defined by

fγ(x) = γ(x0).

¤
Recall, that the Fourier coefficients of the spectral measure µ(A,f) of a function

f ∈ L2 are

µ̂(A,f)(k) =
∫

zkdµ(A,f) =
∫

f(f ◦ σk)dνA.

If f = fγ (γ nontrivial) then, by continuity of fγ and unique ergodicity, we can
evaluate the integrals by taking averages along the trajectory of the element A. In
this manner we obtain the following equalities:

Fact 3. The Fourier coefficients of the spectral measures µ(A,γ) coincide with the
autocorrelations of the sequence obtained from A by applying the character γ:

µ̂(A,γ)(k) = lim
n→∞

1
n

n−1∑

i=0

γ(A(i))γ(A(i + k)) = Φγ(A)(k),

for each k ∈ N (and the autocorrelation functions exist for each γ ∈ Ĝ). ¤
Fact 4. (see [K2] and [C-N] for similar statements) Let A be a Morse sequence
defined by a sequence of blocks (B1, B2, . . . ), satisfying the assumption of Fact 1.
Then, for each nontrivial character γ ∈ Ĝ and each q ∈ N, the measures µ(A,γ)

and µ(Aq,γ) are equivalent (recall that Aq denotes the “truncated” Morse sequence
defined by (Bq+1, Bq+2, . . . )). ¤

In our study of spectral isomorphisms we will compare the behavior of the Morse
flows defined by two Morse sequences, which we denote by A and A′. In our notation
we will use the convention that all letters with a ′ refer to the objects related to
the Morse flow defined by A′, corresponding to the objects denoted for A by the
same letters without a ′.

Fact 5. [K] Let A and A′ be two Morse sequences over G defined by two sequences
of blocks (Bq) and (B′

q), respectively, with the same structure of lengths (nq = n′q
for each q). Let γ, γ′ ∈ Ĝ. Then the spectral measures µ(A,γ) and µ(A′,γ′) are either
equivalent or orthogonal. If they are equivalent then

||µ(Aq,γ) − µ(A′q,γ′)|| → 0,

where || · || denotes the variation norm of measures ¤
As an immediate consequence of Fact 2 and the first statement of Fact 5 we

obtain the following

Theorem 1. The Morse flows defined by A and A′ are spectrally isomorphic if
and only if there exists a permutation π of Ĝ such that π(γ0) = γ0, and, for each
γ ∈ Ĝ, µ(A,γ) and µ(A′,π(γ)) are equivalent. ¤
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Spectral isomorphism and autocorrelations

In this section we will show that spectral equivalence between µ(A,γ) and µ(A′,γ′)
mentioned in Theorem 1 can be tested by checking the autocorrelations of the
defining blocks Bq and B′

q.

Theorem 2. Suppose, with the assumptions of Fact 1, that µ(A,γ) and µ(A′,γ′) are
equivalent for some γ and γ′. Then

max
0≤s<nq

|Φγ(Bq)(s)− Φγ′(B′q)(s)| → 0,

as q tends to infinity.

Proof. The statement holds trivially for γ = γ′ = γ0. Assume γ 6= γ0 (then also
γ′ 6= γ0). Denote εq = maxk∈N |Φγ(Aq)(k)− Φγ′(A′q)(k)|. By Fact 3, we have

εq = max
k∈N

|µ̂(Aq,γ)(k)− µ̂(A′q,γ′)(k)| =

max
k∈N

|
∫

zkd(µ(Aq,γ) − µ(A′q,γ′))| ≤ ||µ(Aq,γ) − µ(A′q,γ′)||.

By the second statement of Fact 5, we obtain εq → 0. On the other hand, using
Lemma 1 for B = γ(Bq) and A = γ(Aq) (then B × A = γ(Aq−1)) and t = 0, we
have, for every 0 ≤ s < nq,

Φγ(Aq−1)(s) = Φγ(Bq)(s) + Φγ(Bq)(nq − s)Φγ(Aq)(1), and

Φγ(Aq−1)(nq − s) = Φγ(Bq)(nq − s) + Φγ(Bq)(s)Φγ(Aq)(1),

from which we obtain

Φγ(Bq)(s) =
Φγ(Aq−1)(s)− Φγ(Aq)(1)Φγ(Aq−1)(nq − s)

1− Φ2
γ(Aq)(1)

(by the observation following the statement of Fact 1, for large q the denominator
is bounded away from zero). An analogous formula holds for γ′, B′

q, A′q−1 and A′q.
Then

|Φγ(Bq)(s)− Φγ′(B′q)(s)| ≤ ηq,

where ηq is a converging to zero function of εq−1, εq, ξA and ξ′A (not depending on
s). This ends the proof. ¤
Theorem 3. Suppose, with the assumptions of Fact 1, that the lengths nq = n′q
are bounded. Then µ(A,γ) and µ(A′,γ′) are equivalent for some γ and γ′ if and only
if there exists q0 ∈ N such that

Φγ(Bq)(s) = Φγ′(B′q)(s),

for each 0 ≤ s < nq and q ≥ q0.

Proof. Sufficiency follows from Fact 3 and Fact 4. Necessity is an immediate con-
sequence of Theorem 2 and the observation that now there are only finitely many
words to choose from. ¤
Remark 3. If the assertion of Theorem 3 holds then, by Lemma 1, it is seen that
Φγ(Aq) = Φγ′(A′q), for q large enough, and hence, by Fact 3, µ(Aq,γ) = µ(A′q,γ′).

Combining Theorem 1 with Theorem 3 we obtain the following characterization
of spectral isomorphisms between Morse flows with bounded lengths of defining
blocks:
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Theorem 4. Let A and A′ be two Morse sequences over G defined by two sequences
of blocks (Bq) and (B′

q), respectively, with the same structure of bounded lengths
(nq = n′q < M for each q). Then the Morse flows defined by A and A′ are spectrally
isomorphic if and only if there exists q0 ∈ N and a permutation π of Ĝ such that
π(γ0) = γ0, π(γ−1) = (π(γ))−1, and,

Φγ(Bq) = Φπ(γ)(B′q),

for each γ ∈ Ĝ, and q ≥ q0.

Proof. Only the property π(γ−1) = (π(γ))−1 needs a comment. Obviously, we have
Φγ−1(Bq) = Φγ(Bq). Thus if γ and π(γ) satisfies the displayed formula, then the
same holds for γ−1 and (π(γ))−1. It is now not hard to see that the permutation
can be modified to one that satisfies the required property. ¤
Remark 4. The question arises: what are the possible pairs of words starting with 1
and having the same autocorrelation functions. Reconstructing a signal from its au-
tocorrelation function is a subject in the field of Information Theory, unfortunately
the “signal” has usually a slightly different setup than our “word”. There are three
natural cases, where two words, say, B and B′ have the same autocorrelations:
(a) B = (b0, b1, ..., bn−1) and B′ is the “flipped word” B∗ = (b∗0, b

∗
1, ..., b

∗
n−1), where

b∗i = bn−1−ibn,
(b) B = C ×D and B′ = C ×D∗,
(c) B is a concatenation of products: B = (C1 ×D)(C2 ×D) . . . (Ck ×D), where
C1, C2, . . . Ck have the same length, and B′ = (C1 ×D∗)(C2 ×D∗) . . . (Ck ×D∗).
However, using a simple computer program, we have found pairs B, B′ not being
flip of each other and whose length is prime (which eliminates any product rep-
resentation like in (b) or (c)). We classify such pairs as (d). The shortest such
examples are over Z3 and have length 13:
B = (1, 1, 1, 1, p̄, p̄, 1, 1, p, 1, p, p̄, 1)
B′ = (1, 1, 1, p̄, p̄, 1, p, p, p, p̄, p, p̄, 1),
and onother pair:
C = (1, p, 1, 1, p̄, 1, p, 1, p̄, 1, 1, p, 1)
C ′ = (1, p, 1, p̄, p̄, p, p̄, p, p̄, p̄, 1, p, 1)
(p denotes the primary root of unity of degree 3). The second pair is more inter-
esting because it does not satisfy the condition SA (see Definition 5 below). There
also exists one example over Z2 of length 17.

Spectral isomorphisms governed by a group automorphism

Our main interest is in determining sufficient conditions forcing the permutation
of Theorem 4 to be a group automorphism of Ĝ. Of course, if the spectrum is not
simple, then there are many permutations satisfying the assertion. In this case we
are interested to find out whether among all such permutations there exists at least
one group automorphism.

Recall that every group automorphism v̂ : Ĝ → Ĝ has the form

v̂(γ)(g) = γ(v(g))

(g ∈ G), where v is a group automorphism of G.

The case of Zp for p prime
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Consider the case where G is the cyclic group of roots of unity, denoted by Zp.
First observe that if p ≤ 4 then any permutation preserving the unity and inverse
is an automorphism, and hence every spectral isomorphism between Morse flows
over Zp is governed by a group automorphism. But there are stronger reasons why
the same must hold olso for larger prime numbers p.

Theorem 5. Let Zp be the (additive) cyclic group of order p where p > 2 is prime.
Consider two Morse sequences A,A′ over Zp defined by two sequences of blocks
(Bq) and (B′

q), with the same structure of bounded lengths. Then the corresponding
Morse flows are spectrally isomorphic if and only if there exists a group automor-
phism v : Ẑp → Ẑp such that, for each γ ∈ Ẑp, the spectral measures µ(A,γ) and
µ(A′,v(γ)) are equivalent. Moreover, possible are only two cases
(A) there are infinitely many numbers q for which the blocks Bq and B′

q are not
symmetric; then both flows have simple spectrum and the automorphism v is unique,
(B) all blocks Bq and B′

q for q ≥ q0 are symmetric; then both flows have spectral
multiplicity 2 (except for the discrete part) and there are two such automorphisms,
v and −v.

Proof. Note that Ẑp = Zp, and each character γ on Zp has the form γs(r) = εsr,
where ε denotes the primary root of unity of degree p, and r, s ∈ Zp. Theorem 4
says that

Φγs(Bq) = Φγπ(s)(B′q),

for q ≥ q0. In this notation we have π(0) = 0 and π(−s) = −π(s). We can also
assume that π(1) = 1 (There exists a group automorphism w : Zp → Zp sending 1 to
π(1). The Morse sequence w(A′) is spectrally isomorphic to A via the permutation
π′(s) = w−1(π(s)), which clearly satisfies π′(1) = 1).

Fix q ≥ q0 and let n be the length of Bq. Applying the second part of Definition
2, for each 1 ≤ k < n and s ∈ Zp we can write

Φγs(Bq)(k) =
∑

r∈Zp

εsrfrBq (k, r),

Φγs(B′q)(k) =
∑

r∈Zp

εsrfrB′q (k, r).

We will prove that
frBq (k, r) = frB′q (k, r)

for every r ∈ Zp. Consider the following polynomial of degree p − 1 with rational
coefficients:

W (z) =
∑

0≤r≤p−1

zr(frBq (k, r)− frB′q (k, r)).

Since π(1) = 1, we see that ε is one of zeros of this polynomial. On the other hand,
W (z) has a rational zero at 1 (because in each block the sum of frequencies eqals
to 1). This yields that either W (z) ≡ 0 or ε is an algebraic number of degree p− 2.
The last possibility contradicts the well known fact that ε is an algebraic number
of degree p− 1.

Having established equality of corresponding frequencies in Bq and B′
q, we now

see that Φγs(Bq)(k) = Φγs(B′q)(k), for every s, which implies that the identity per-
mutation π = id (which obviously is a group automorphism) governs the spectral
isomorphism.
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In order to prove the second part of the theorem, first assume that the identity
is a unique such permutation. Then we conclude that for infinitely many indices
q ≥ q0 both blocks Bq, B

′
q are asymetric (if for each q ≥ q0 at least one of the blocks

Bq, B
′
q is symmetric then this block, say B, has the same autocorrelations as −B,

hence the permutation −id provides a second possibility.) Moreover, both flows
then have simple spectrum, because otherwise there would be again more than one
permutation. Thus we have the situation as in the assertion (A).

Suppose there exists another permutation π governing the spectral isomorphism.
Let Bq = (εr0 , εr1 , . . . , εrn−1). For each s we have Φγs(Bq) = Φγπ(s)(B′q), but also, as
proved before, Φγs(Bq) = Φγs(B′q). Hence, we obtain

Φγs(Bq) = Φγπ(s)(Bq).

Let k be the smallest index for which at least one of the exponents rk, rn−1−k is
different from 0. For simplicity of notation, we denote a = rk, b = rn−1−k. We have

Φγs(Bq)(n− 1− k) =
1
n

(zbs + z−as),

Φγπ(s)(Bq)(n− 1− k) =
1
n

(zbπ(s) + z−aπ(s)).

We use the following elementary fact concerning unimodular complex numbers: if
z1 + z2 = z3 + z4 6= 0 then either (z1 = z3 and z2 = z4) or (z1 = z4 and z2 = z3).
Since in Zp no two numbers add to zero, we must have either

bs = bπ(s) and as = aπ(s)
or

bs = −aπ(s) and as = −bπ(s).

Since either a or b is nonzero, we have π(s) = s in the first case, and (π(s))2 = s2

in the second. The last equation has in Zp two solutions π(s) = ±s.
Since π 6= id, π(s) = −s is valid for some s 6= 0. Then we have

Φγs(Bq) = Φγ−s(Bq).

We will prove that Bq is symmetric. Suppose the converse, and let k be the smallest
index for which a = rk 6= b = rn−1−k. We have

Φγs(Bq)(n− 1− k) =
1
n

(zbs + R + z−as),

Φγ−s)(Bq)(n− 1− k) =
1
n

(z−bs + R + zas),

where R denotes the part of the formula involving the remaining (outer) terms of
the block. But, by symmetry of the outer part of Bq, R is a real number, hence, as
before, either

bs = −bs and as = −as

or

bs = as and − as = −bs.
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In either case a = b, a contradiction.
The fact that in the symmetric case the spectral multiplicity is not larger than

2 is now obvious: in the converse case there would exist a third permutation. This
completes the proof of (B). ¤

Other cases

In the general case we can prove an appropriate positive theorem with some
additional assumptions on the structure of the defining blocks (Bq) (we need them
to be non-symmetric in a stronger sense). First we need the following observations:

Let π be any permutation of Ĝ. Then π can be viewed as a Haar measure
preserving transformation on Ĝ. Thus it induces a unitary operator on L2(Ĝ).
The characters on Ĝ form an orthogonal base in L2(Ĝ) and they have the form
ĝ(γ) = γ(g) (g ∈ G). Developing their images ĝ ◦ π in the base we obtain:

(*) ĝ ◦ π =
∑

h∈G

Π(h, g)ĥ,

where Π is some complex square matrix with rows and columns indexed by the
elements of G.

Lemma 2. Let π be the permutation of Ĝ as in Theorem 4. The matrix Π has the
following properties:
(i) Π is unitary,
(ii) Π(h, g1g2) =

∑
e∈G Π(e, g1)Π(he−1, g2) (h, g1, g2 ∈ G),

(iii) Π(1,1) = 1, Π(1, h) = Π(h,1) = 0 if h 6= 1,
(iv) Π(h, g−1) = Π(h−1, g) (h, g ∈ G)

Proof. The properties (i) – (iii) follow from the fact that π represents a unitary
and multiplicative operator on L2(Ĝ). The statements (iii) and (iv) can be easily
derived from the conditions π(γ0) = γ0 and π(γ−1) = (π(γ))−1. We omit the
detailed calculations. ¤
Lemma 3. Let A and A′ be as in Theorem 4 and suppose the corresponding Morse
flows are spectrally isomorphic. Then for every q ≥ q0, 0 ≤ k < nq and h ∈ G we
have

frB′q (k, g) =
∑

h∈G

Π(h, g) frBq
(k, h).

Proof. Denote for short B = Bq, B′ = B′
q and n = nq. By Theorem 4, we have

Φγ(B) = Φπ(γ)(B′),

i.e., for every fixed 0 ≤ k < n,
∑

h∈G

γ(h) frB(k, h) =
∑

g∈G

π(γ)(g) frB′(k, g).

The right hand side can be rewritten as
∑

g∈G(ĝ ◦ π)(γ) frB′(k, g). By the formula
(*) it then becomes

∑

g∈G

∑

h∈G

Π(h, g)ĥ(γ) frB′(k, g) =
∑

h∈G

γ(h)
∑

g∈G

Π(h, g) frB′(k, g)
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(the equalities hold for each γ ∈ Ĝ). Viewing the above as a function of the variable
γ ∈ Ĝ and by uniqueness of the representation in the basis {ĥ : h ∈ G} we obtain
frB(k, h) =

∑
g∈G Π(h, g) frB′(k, g) for each h. Since Π is unitary, Π−1 = ΠT , and

the desired equality holds. ¤
Suppose that Π(h, g) = 1 for some h, g ∈ G. Then, by (i), Π(e, g) = 0 if e 6= h

and Π(h, e) = 0 if e 6= g.

Definition 4. We say that g ∈ G has the permutation property if Π(h, g) = 1 for
some h ∈ G. Then we denote by v(g) the so determined element h.

Lemma 4. The set Gv of those g ∈ G which have the permutation property is a
subgroup, and v is a group isomorphism between Gv and its image by v.

Proof. By (iii) 1 ∈ Gv, and by (iv) g ∈ Gv =⇒ g−1 ∈ Gv. It suffices to check
that g1, g2 ∈ Gv =⇒ g1g2 ∈ Gv and v(g1g2) = v(g1)v(g2). Indeed, by (ii)

Π(h, g1g2) =
∑

e∈G

Π(e, g1)Π(he−1, g2).

By the permutation property of g1 and g2, the only nonzero summand is where
e = u(g1) and simultaneously he−1 = v(g2). Since nonzero summand exists for
some h, we obtain h = v(g1)v(g2). By uniqueness of such h, Π(h, g1g2) = 1, hence
g1g2 ∈ Gv and v(g1g2) = v(g1)v(g2), as needed. ¤

We will prove the group automorphism property of spectral isomorphism between
Morse sequences whose defining blocks Bp satisfy certain condition of asymmetry.
For a given block B = (b0, b1, . . . , bn−1) ∈ Gn and 0 ≤ k ≤ n/2 we denote by GB

k the
subgroup of G generated by the elements b0, b1, . . . , bk−1, bk and their symmetric
correspondents bn−1, bn−2, . . . , bn−k, bn−k−1. If k > n/2 then we put GB

k = GB
k−1.

Definition 5. We say that a sequence of blocks (Bq) has property AS if for each
k ∈ N and q ∈ N at least one of the elements bk, bn−k−1 of Bq belongs to the group
Gk−1 generated by

⋃
q G

Bq

k−1.

Remark 6. The above class of blocks is quite large. For example, in cyclic groups
it suffices that the last term of the block is a generator.

Theorem 6. Let A and A′ be a pair of spectrally isomorphic Morse sequences
over G, with the same structure of bounded lengths. The number q0 is thus given
(see Theorem 4). If (B′

q)q≥q0 , (or (Bq)q≥q0) has property AS then π is a group
automorphism.

Proof. Suppose (B′
q)q≥q0 has property AS. We will inductively prove that G′k ⊂ Gv

and that v(G′k) = Gk. Since
⋃

k∈NG′k = G, the automorphism v will eventually
extend to the whole group G.
Step 0
Fix q ≥ q0 and denote B = Bq, B′ = B′

q and n = nq. By Theorem 4, for every
γ ∈ Ĝ we have Φγ(B)(n−1) = Φπ(γ)(B′)(n−1). By the definition of autocorrelations
this simply means that

γ(bn−1) = π(γ)(b′n−1), for each γ,

i.e., that b̂′n−1 ◦ π = b̂n−1. By the formula (*) we obtain that

Π(bn−1, b
′
n−1) = 1.
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We have proved that b′n−1 has the permutation property, and v(b′n−1) = bn−1.
Recall that b′0 = b0 = 1, hence v(b′0) = b0. We do so for each q ≥ q0. The
application of Lemma 4 yields G′0 ⊂ Gv and v(G′0) = G0.
Step k

Suppose the statement has been proved for k − 1. As before, fix q ≥ q0 and
denote B = Bq, B′ = B′

q and n = nq. For every γ ∈ Ĝ we have

Φγ(B)(n− k − 1) = Φπ(γ)(B′)(n− k − 1),

i.e., ∑

g∈G

γ(g) frB(n− k − 1, g) =
∑

g∈G

π(γ)(g) frB′(n− k − 1, g).

The above can be written as

L =
∑

g∈Gk−1

γ(g) frB(n− k − 1, g) +
∑

g/∈Gk−1

γ(g) frB(n− k − 1, g) =

∑

g∈G′k−1

π(γ)(g) frB′(n− k − 1, g) +
∑

g/∈G′k−1

π(γ)(g) frB′(n− k − 1, g) = R.

Note that if g ∈ Gv then, by (*), ĝ ◦ π = ˆv(g), and, by Lemma 3, frB′(k, g) =
frB(k, v(g)). Thus the first sum of R becomes

∑

g∈G′k−1

γ(v(g)) frB(n− k − 1, v(g)),

which, by the assumption that v(G′k−1) = Gk−1 equals to the first sum of L.
By property AS, the second sum of R consists of at most one summand: either
1
nπ(γ)(b′n−k−1) or 1

nπ(γ)(b′k
−1

b′n−1); this is best seen if R is written as

1
n

π(γ)(b′n−k−1) +
1
n

k−1∑

i=1

π(γ)(b′i
−1

b′i+n−k−1) +
1
n

π(γ)(b′k
−1

b′n−1),

because all elements b′i
−1

b′i+n−k−1 in the central sum belong by definition to G′k−1.
Letting γ = γ0 in the expressions L an R, their first sums become the sums of the
corresponding frequencies over G′k−1 and Gk−1, so, by the previous argument, their
common value is either 1 or 1 − 1

n . It is now seen that the second sum of L has
as many summands as that of R, i.e., zero or one. The case of zero summands is
trivial. Suppose we have one summand on each side, say 1

nπ(γ)(g) and 1
nγ(h). Then

π(γ)(g) = γ(h) for each γ. As before, by the formula (*) we obtain Π(h, g) = 1.
We have proved that g ∈ Gv, and v(g) = h. We do so for each q ≥ q0. So obtained
elements gq exhaust all new elements generating G′k and Gk, (“new” means not in
G′k−1), and hq exhaust all new elements generating Gk. The application of Lemma 4
yields G′k ⊂ Gv and v(G′k) = Gk. ¤
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