\mathbf{I} : soit $(\Omega, \mathcal{B}, \mu)$ un espace mesuré positif. Montrer les propriétés suivantes :

- i) si $A, B \in \mathcal{B}$ et $A \subset B$ alors $\mu(A) \leq \mu(B)$;
- ii) si $A_n \in \mathcal{B}, n \ge 1$, alors $\mu(\bigcup_n A_n) \le \sum_n \mu(A_n)$.

II: soit $\lambda > 0$ et \mathbb{P} la loi de Poisson de paramètre λ sur \mathbb{N} . Soit $f : \mathbb{N} \to \mathbb{R}$ telle que f(n) = n.

- i) calculer $\int_{\mathbb{N}} f d\mathbb{P}$, et $\int_{\mathbb{N}} f^2 d\mathbb{P}$.
- ii) calculer les mêmes intégrales pour la loi exponentielle de paramètre q.

III:

Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $f(x,y) = (\cos(xy), xy, \sin(xy))$. Donner un développement limité à l'ordre 1 de f en (0,0).

IV:

- i) décrire le système de coordonnées sphériques.
- ii) calculer le volume d'une hémisphère de rayon R.
- iii) calculer le volume d'une calotte polaire de latitude basse 60°.

V: application du théorème de convergence monotone. Soit $f:[0,1]\to\mathbb{R}$ une application mesurable. Trouver la limite de

$$\int_0^1 \frac{dt}{\sqrt{f^2(t) + 1/n}}.$$

VI: une application du théorème de convergence dominée. Soient $a < b \in \mathbb{R}$ et $f:]a,b[\to \mathbb{R}$ bornée et Lebesgue intégrable et telle que $\lim_{x \to a^+} f(x) = \gamma \in \mathbb{R}$. Montrer qu'alors pour tout $t \in]a,b[$ la fonction $x \mapsto \int_{]a,t[} \frac{f(x)}{\sqrt{(x-a)(t-x)}} dx$ est intégrable sur]a,t[. Calculer ensuite

$$\lim_{t\to a^+}\int_{]a,t[}\frac{f(x)}{\sqrt{(x-a)(t-x)}}dx.$$