I : paramétrer le profil d'une quille.

II : calculer $I = \int_0^{2\pi} \frac{1+\sin\theta}{3+\cos\theta} d\theta$.

III: calculer $I(s) = \int_0^{+\infty} \frac{\cos(sx)}{x^2+1} dx$.

IV : calculer $J = v.p. \int_{-\infty}^{+\infty} \frac{dx}{x^4 - 1}$.

 ${\bf V}$: calculer $J=\int_0^{+\infty}e^{-x^2}\cos(2bx)dx$ en utilisant un contour rectangulaire approprié. .

VI: calculer $J = \int_0^{+\infty} \frac{\ln x}{(1+x)^3} dx$.

VII : soient a > 0 et ν réel. Montrer que

$$\int_0^{+\infty} \frac{\cos(\nu x)}{\cosh x + \cosh a} dx = \frac{\pi \sin(\nu a)}{\sinh(\pi \nu) \sinh a}$$

en utilisant la fonction $z\mapsto \frac{e^{\nu z}}{\cosh z+\cosh a}$ et le contour rectangulaire de sommets $\pm R$ et $\pm R+2i\pi$.