I : résoudre l'équation de Verhulst $y' - Ay = -By^2$ et identifier la fonction logistique.

II : résoudre yy' = -x par la méthode des formes exactes.

III: réduire y' + y = -x/y à la forme linéaire. Résoudre.

IV : résoudre $y''' + 3y'' + 3y' + y = 8e^x + x + 3$.

V: résoudre $x^3y''' - 3x^2y'' + 6xy' - 6y = x^4 \ln x$ (pour trouver une base chercher les solutions $y = x^m$).

VI : résoudre le système

$$\begin{cases} y_1' &= y_1 + y_2 + 10\cos t; \\ y_2' &= 3y_1 - y_2 - 10\sin t. \end{cases}$$

VII : certains systèmes physiques, soumis à de petites oscillations, emmagasinent de l'´nergie, alors que soumis à de fortes perturbations ils en dissipent. On espère que le système atteindra un cycle limite "périodique" qui correspond à une courbe intégrale fermée dans le plan.

Ces systèmes sont parfois modélisés par l'équation de ${\bf Van\ der\ Pol}$:

$$y'' - \mu(1 - y^2)y' + y = 0.$$

- 1) Poser $y=y_1,\ y'=y_2,$ et observer que $y''=(dy_2/dy_1)y_2.$ Substituer dans l'équation de Van der Pol.
- 2) Les isoclines dans le plan des phases (y_1, y_2) sont les courbes $dy_2/dy_1 = K = cte$. Résoudre et tracer les isoclines et identifier les trajectoires périodiques limites.

VIII : comme dans l'exemple précédent, résoudre l'équation y"" $-4y + y^3 = 0$ par un système en introduisant $y_1 = y$, $y_2 = y'$, et en exprimant y_2 en fonction de y_1 . Tracer l'allure des courbes intégrales dans le plan des phases (y_1, y_2) .