On Strong Uniform Distribution, III

By

Y. Lacroix

ISITV, Toulon, France

Received November 26, 2002; in revised form March 5, 2003
Published online November 21, 2003 © Springer-Verlag 2003

Abstract. We construct infinite dimensional chains that are L^1 good for almost sure convergence, which settles a question raised in this journal [7] and earlier in [6] by R. Nair. In [7] it was stated that the construction proposed in [4] was invalid. We complete the construction proposed in [4], where it is true that a piece of proof was forgotten. The technic remains the same and the completion of the proof rather natural.

2000 Mathematics Subject Classification: 11K06, 28D15
Key words: Dimension, chains, almost sure convergence, universally good

1. Introduction

A chain C is a multiplicative sub-semigroup of the one of positive integers \mathbb{N}. We say a sequence $p = (p_k)$ of primes generates the chain C if $C = \left\{ \prod_{j=1}^{J} p_k^{\alpha_j} : \alpha_k \geq 0, J \geq 1 \right\}$. A chain is of finite dimension (abbreviated “an FD chain”) if the sequence of primes generating it is finite; else, it is infinite dimensional (abbreviated “ID chain”).

Throughout, $([\mathbb{T}, \lambda])$ denotes the reals mod 1 with Lebesgue measure. We shall say that a chain C is good if, once one orders $C = \{a_1 < a_2 < \cdots \}$, it holds that for any $f \in L^1([\mathbb{T}, \lambda])$,

$$\frac{1}{k} \sum_{j=1}^{k} f(a_j x \mod 1) \to \int_{0}^{1} f d\lambda \quad \text{for} \lambda - \text{a.e.} \ x \in \mathbb{T}. \quad (1)$$

Else we say C is a bad chain.

Nair [6, 7] asks twice for the existence of a good ID chain. He proves in [6] that an FD chain is always good, using the multidimensional ergodic theorem ([1], [3]) for \mathbb{N}^d-actions. It is also known ([2], [5]) that taking all the primes generates a bad ID chain, with counter-examples to almost sure convergence in (1) for some $f \in L^\infty([\mathbb{T}, \lambda])$.

In [7] one can find on page 342, a few lines after formula [7, (1.3)], the following (we have adapted the reference numbering):

“In [6] the author raised the question whether the condition in his theorem that the set p_1, \ldots, p_d be finite is necessary. This question remains open despite the invalid construction of a putative such infinite set in [4].”
A PhD student of the author, Vincent Chaumoître, has, following [7], made a precise rereading of [4], and pointed out to the author the precise spot where [4] was uncomplete. In fact, the displayed formula between [4, (5)] and [4, (P6)] is only correct in the FD case, and hence the reduction of [4, (P2)] to [4, (P6)] is not valid in the ID case. The place where this omission occurs in [4] corresponds to the part of the paper devoted to show how the result from [6] could be recovered using Tempelman’s ergodic theorem, giving a simple proof that an FD chain is good [4, Corollary 1] (cf. [6] for a different approach).

The present note completes the gap, using exactly the same ideas as in [4] to produce a complete proof of the following:

Theorem 1. There exist good ID chains.

We will present the completed argumentation omitting the ergodic theoretic preliminaries for which we refer to [4]. Let us mention by the way that the construction of bad ID chains in [4] is perfectly valid.

2. Good ID Chains!

2.1. Semigroup actions and Tempelman’s conditions. We shall make essential use of the following abelian semi-group endowed with its counting measure (for a subset T, $\#T$ denotes its cardinality):

$$l_0(\mathbb{N}) := \{(\alpha_i)_{i \geq 1} : \alpha_i \in \mathbb{N}, \exists j, \ i > j \Rightarrow \alpha_i = 0\}.$$

Given an integer q, we identify \mathbb{N}^q with a sub-semigroup of \mathbb{N}^{q+1} and the later with one of $l_0(\mathbb{N})$ via the following embeddings:

$$\begin{align*}
\mathbb{N}^q &\leftrightarrow \mathbb{N}^{q+1} & \leftrightarrow & \quad l_0(\mathbb{N}) \\
(\alpha_1, \ldots, \alpha_q) &\mapsto (\alpha_1, \ldots, \alpha_q, 0) & \mapsto & (\alpha_1, \ldots, \alpha_q, 0, 0, \ldots).
\end{align*}$$

For an integer p, we define $T_p : X \rightarrow X$ by $T_p x = px \mod 1$. It is standard that the system $(\mathbb{T}, \lambda, T_p)$ is metrically conjugated to a one sided Bernoulli shift which is ergodic [3]. It is standard also that $T_p \circ T_q = T_q \circ T_p = T_{pq}$, whence given a sequence of integers $(p_k)_{k \geq 1}$, we define an action Γ of $l_0(\mathbb{N})$ on $(\mathbb{T}, \lambda, T_p)$ by

$$\Gamma((\alpha_k)) := \bigcirc_{k \geq 1} T_{p_k}^{\alpha_k},$$

where $T_{p_k}^0$ is the identity map. Given any sequence $(T(n))$ of subsets of $l_0(\mathbb{N})$, we will consider the following multiple condition (P):

$$\begin{align*}
(P1) : & \quad 0 < \#T(n) < \infty, \\
(P2) : & \quad \forall \gamma \in l_0(\mathbb{N}), \lim_n \#((T(n) + \gamma)\Delta T(n))/\#T(n) = 0, \\
(P3) : & \quad T(n) \subset T(n+1), n \geq 1, \\
(P4) : & \quad \exists K_1 < \infty, \forall N, \lim_n \#(T(N) + T(n))/\#T(n) \leq K_1, \\
(P5) : & \quad \exists K_2 < \infty, \forall n, \#(T(n) - T(n))/\#T(n) \leq K_2,
\end{align*}$$

where $T(n) - T(n) := \{\alpha \in l_0(\mathbb{N}) : \exists \gamma \in T(n), \ \alpha + \gamma \in T(n)\}$.

Indeed, if \((T(n))\) satisfies \((P)\), by Tempelman’s Ergodic Theorem [3, p. 224], for any \(f \in L^1(\mu)\), the averages

\[
\frac{1}{\#T(n)} \sum_{\alpha \in T(n)} f \circ \Gamma(\alpha)(x)
\]

converge \(\mu\text{-a.e.}\). Moreover, the limit in (2) is, following the argument in [3, p. 206], or [8, Theorem 6.3.1], a \(\Gamma\)-invariant function, whence \(T_p\)-invariant for some \(p \geq 2\), whence, by ergodicity of \(T_p\), it is constant and must coincide with the expectation of \(f\), as is standard.

When (2) holds we say that \((T(n))\) is \(L^1\) good universal (for \(l_0(\mathbb{N})\) actions). We shall see in the next section that for some choice of \((T(n))\), therefore the condition \((P)\) will be used to produce a good ID chain.

The same remarks can be stated for \(\mathbb{N}^q\)-actions.

2.2. Condition \((P)\) for a pairwise coprime generated chain and the FD case.

Let \(p_1 < p_2 < \cdots\) be pairwise coprime integers generating the chain \(\mathcal{C} = \{a_1 < a_2 < \cdots\}\). For given \(q \geq 1\) and \(n \in [1, \infty]\), we let

\[
\begin{align*}
T_q(n) & := \{ (\alpha_1, \ldots, \alpha_q) \in \mathbb{N}^q : \sum_{i=1}^q \alpha_i \log p_i \leq \log n \}, \\
T(n) & := \{ \alpha = (\alpha_i) \in l_0(\mathbb{N}) : \sum_{i \geq 1} \alpha_i \log p_i \leq \log n \}.
\end{align*}
\]

We notice that sequences (1) and (2) coincide for this choice of \((T(n)), (T_q(n))\) in the FD case). For given \(q \geq 1\), both \((T_q(n))\) and \((T(n))\) satisfy \((P1), (P3),\) and \((P5)\) with \(K_2 = 1\), because \(T(n) - T(n) \subset T(n)\).

Moreover, since \(T(n) \subset T(N) + T(n)\) (resp. \(T_q(n) \subset T_q(N) + T_q(n)\)), we have

\[
\begin{align*}
\#(T(N) + T(n)) & \leq \#T(n) + \sum_{\gamma \in T(N)} \#((\gamma + T(n)) \setminus T(n)) \\
(\text{resp. } \#(T_q(N) + T_q(n)) & \leq \#T_q(n) + \sum_{\gamma \in T_q(N)} \#((\gamma + T_q(n)) \setminus T_q(n)))
\end{align*}
\]

so we see that \((P2)\) implies \((P4)\) with \(K_1 = 1\). Hence we deduce

Lemma 1. The sequence \((T(n))\) (resp. \((T_q(n))\)) defined by (3) is \(L^1\) good universal for \(l_0(\mathbb{N})\) (resp. \(\mathbb{N}^q\)) actions whenever it satisfies \((P2)\).

Given \(\gamma = (\gamma_i) \in l_0(\mathbb{N})\) (resp. \(\gamma \in \mathbb{N}^q\)), we have

\[
\begin{align*}
\#((T(n) + \gamma) \Delta T(n)) & = \#(T(n) \setminus (T(n) + \gamma)) + \#((T(n) + \gamma) \setminus T(n)) \\
(\text{resp. } \#(T_q(n) + \gamma) \Delta T_q(n)) & = \#(T_q(n) \setminus (T_q(n) + \gamma)) + \#((T_q(n) + \gamma) \setminus T_q(n)))
\end{align*}
\]

An elementary computation [5] shows that

\[
\#T_q(n) \sim \frac{(\log n)^q}{q! \prod_{i=1}^q \log p_i},
\]

where \(\sim\) means that the ratio of its left and right hand sides goes to 1 as \(n\) goes to \(\infty\).

For any \(\gamma \in \mathbb{N}^q, T_q(n) \setminus (T_q(n) + \gamma) = \{ \alpha \in T_q(n) : \exists i : \alpha_i < \gamma_i \}, \) so if we set

\[
\begin{align*}
B_q(n, i) & = \{ \alpha \in T_q(n) : \alpha_i < \gamma_i \} \quad \text{and} \\
T_{q[i]}(n) & = \{ (\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_q) \in \mathbb{N}^{q-1} : \sum_{j \neq i} \alpha_j \log p_j \leq \log n \},
\end{align*}
\]
then one observes that
\[
\#(T_q(n) \setminus (T_q(n) + \gamma)) \leq \sum_{i=1}^{q} \#B_q(n, i) \leq \sum_{i=1}^{q} \gamma_i \#T_q^{(i)}(n),
\]
whence by (5) we get at once that \(\lim_n \#(T_q(n) \setminus (T_q(n) + \gamma)) / \#T_q(n) = 0\). Secondly, we have that
\[
(T_q(n) + \gamma) \setminus T_q(n) = \{ \alpha + \gamma : \sum_{i} \alpha_i \log p_i \leq \log n \text{ and } \sum_{i} (\alpha_i + \gamma_i) \log p_i > \log n \} \subseteq \{ \beta \in \mathbb{N}^q : \log n < \sum_{i} \beta_i \log p_i < \log (n \times n(\gamma)) \},
\]
where \(n(\gamma) = \prod_i p_i^{\gamma_i}\). So since \(T_q(n) \subseteq T_q(n \times n(\gamma))\), we deduce that
\[
\frac{\#((T_q(n) + \gamma) \setminus T_q(n))}{\#T_q(n)} \leq \frac{\#T_q(n \times n(\gamma)) - \#T_q(n)}{\#T_q(n)} \to 0 \text{ by (5)},
\]
hence with (4), (P2) is satisfied for the \(\mathbb{N}^q\) case, and as a consequence of our study of the FD case we obtain

Corollary 1. ([6, Theorem 1]) Any FD chain satisfies (P2), whence is good.

2.3. The inductive step for constructing a good ID chain. We set for \(\gamma \in l_0(\mathbb{N})\) (resp. \(\gamma \in \mathbb{N}^q\))
\[
\partial_\gamma(T(n)) = (T(n) + \gamma) \Delta T(n) \text{ (resp. } \partial_\gamma(T_q(n)) = (T_q(n) + \gamma) \Delta T_q(n)).
\]

We know by Lemma 1 that (P2) is enough for an ID coprime generated chain to be good. And we also know by Corollary 1 that (P2) holds in the FD case. The idea to reach the ID case is to show that given \(p_1 < \cdots < p_q\), it is possible to choose \(p_{q+1} > p_q\) such that “small” increase occurs in the quotients (P2) uniformly in \(\gamma\) belonging to some finite subset \(\langle q \rangle\) of \(l_0(\mathbb{N})\), where the increasing union over \(q\) of these subsets cover \(l_0(\mathbb{N})\). This is done in the present section and summarized in Lemma 2 below.

If \(q(n) := \max\{ q : p_q \leq n \}\), then \(T(n) = T_{q(n)}(n)\). Our argumentation shall strongly rely on this equality, on a careful use of (5) and the second estimate (cf. [5] where it is proved for the first \(q\) primes but carries out also in the case we need here)
\[
\#((T_q(n) + \bar{q}) \setminus T_q(n)) \sim_{x \to \infty} \frac{\log (p_1^{q} \cdots p_q^{q})}{(q - 1)! \prod_{i=1}^{q} \log p_i} (\log x)^{q - 1}, \tag{6}
\]
where \(\bar{q} = (q, q, \ldots, q)\).

We assume \(q > 1\) and that \(p_1 < \cdots < p_q\) are pairwise coprime. We define
\[
\langle q \rangle := \{ \gamma = (\gamma_i) \in \mathbb{N}^q : \gamma_i \leq q, \ 1 \leq i \leq q \}.
\]
Given arbitrary \(\varepsilon_q > 0\), by (P2) for the FD case (Corollary 1), there exists an \(N(\varepsilon_q)\) such that
\[
x \geq N(\varepsilon_q) \Rightarrow \forall \gamma \in \langle q \rangle, \#\partial_\gamma(T_q(x)) / \#T_q(x) < \frac{\varepsilon_q}{2}. \tag{7}
\]

We now let \(p_{q+1} > p_q\) denote an integer coprime to the previous numbers \(p_k\), to be specified later on. We assume that \(p_{q+1} \geq N(\varepsilon_q)\) (\(N(\varepsilon_q)\) comes in (7)). Then if
On Strong Uniform Distribution, III

\[k \geq 1 \) and \(p_{q+1}^k \leq n < p_{q+1}^{k+1} \), we have

\[T_{q+1}(n) = \sum_{i=0}^{k} (\mathbb{N}^q \times \{i\}) \cap T_{q+1}(n) \] (a disjoint union).

Let us put \(T_{q+1}(n, i) := (\mathbb{N}^q \times \{i\}) \cap T_{q+1}(n), 0 \leq i \leq k = \left\lfloor \frac{\log n}{\log p_{q+1}} \right\rfloor \). Then we observe that

\[(\alpha_1, \ldots, \alpha_q, i) \in T_{q+1}(n, i) \Leftrightarrow (\alpha_1, \ldots, \alpha_q) \in T_q \left(\frac{n}{p_{q+1}^i} \right), \]

and moreover if \(\gamma \in \langle q \rangle \subseteq \mathbb{N}^q \), then \(\gamma_{q+1} = 0 \), and therefore \(\partial_\gamma(T_{q+1}(n)) = \sum_{i=0}^{k} \partial_\gamma(T_{q+1}(n, i)) \) (disjoint union) where \(\partial_\gamma(T_{q+1}(n, i)) = (T_{q+1}(n, i) + \gamma) \Delta T_{q+1}(n, i) \). Then for such \(\gamma \),

\[(\alpha_1, \ldots, \alpha_q, i) + \gamma \in \partial_\gamma(T_{q+1}(n)) \Leftrightarrow (\alpha_1, \ldots, \alpha_q) + \gamma \in \partial_\gamma \left(T_q \left(\frac{n}{p_{q+1}^i} \right) \right). \]

We now define \((\gamma \leq \gamma') \Leftrightarrow (\forall i, \; \gamma_i \leq \gamma'_i) \). An easy observation is

\[\gamma \leq \gamma' \Rightarrow \#\partial_\gamma(T_q(n)) \leq \#\partial_\gamma(T_q(n)). \]

Hence with the above we get

\[\gamma \in \langle q \rangle \Rightarrow \\begin{cases} \#T_{q+1}(n) = \sum_{i=0}^{k} \#T_q \left(\frac{n}{p_{q+1}^i} \right), \\ \#\partial_\gamma(T_{q+1}(n)) \leq \#\partial_\gamma(T_q(n)) = \sum_{i=0}^{k} \#\partial_\gamma \left(T_q \left(\frac{n}{p_{q+1}^i} \right) \right). \end{cases} \]

Therefore as soon as \(n, p_{q+1} \geq N(\varepsilon_q) \), if \(k = \left\lfloor \frac{\log n}{\log p_{q+1}} \right\rfloor \), we have, using (7):

\[k = 0 \) (i.e. \(N(\varepsilon_q) \leq n < p_{q+1} \)) \Rightarrow T_{q+1}(n) = T_q(n) \]

\[\Rightarrow \forall \gamma \in \langle q \rangle, \; \#\partial_\gamma(T_{q+1}(n))/\#T_{q+1}(n) < \frac{\varepsilon_q}{2} , \]

and

\[k \neq 0 \Rightarrow \forall \gamma \in \langle q \rangle, \]

\[\#\partial_\gamma(T_{q+1}(n))/\#T_{q+1}(n) \leq \#\partial_\gamma(T_q(n))/\#T_{q+1}(n) \]

\[\leq \frac{\sum_{i=0}^{k-1} \#\partial_\gamma \left(T_q \left(\frac{n}{p_{q+1}^i} \right) \right)}{\sum_{i=0}^{k-1} \#T_q \left(\frac{n}{p_{q+1}^i} \right)} + \frac{\#\partial_\gamma \left(T_q \left(\frac{n}{p_{q+1}^k} \right) \right)}{\#T_q \left(\frac{n}{p_{q+1}^k} \right)} \]

\[< \frac{\varepsilon_q}{2} + A \left(p_{q+1}, \frac{n}{p_{q+1}^k} \right), \]

where \(A(p_{q+1}, x) = \#\partial_\gamma(T_q(x))/T_q(p_{q+1}x) \) \((x \geq 1)\).

Next we can write

\[A(p_{q+1}, x) = \frac{\#(T_q(x) + \bar{q}) \setminus T_q(x)}{\#T_q(p_{q+1}x)} + \frac{\#(T_q(x) \setminus (T_q(x) + \bar{q}))}{\#T_q(p_{q+1}x)}. \]

We firstly can estimate as in Section 2.2 that

\[\#(T_q(x) \setminus (T_q(x) + \bar{q})) \leq q \sum_{i=1}^{q} \#T_q(i)(x) \leq q \sum_{i=1}^{q} \#T_q(i)(p_{q+1}x), \]
which makes sure that, using (5), \(\frac{\#((T_q(x) + \bar{q}) \setminus T_q(x))}{\#T_q(p_{q+1}x)} \rightarrow 0 \) as \(p_{q+1} \rightarrow +\infty \), uniformly in \(x \geq 1 \).

Secondly, by (5, 6), there exist two positive constants \(C_1 \) and \(C_2 \), depending only on \(q \), such that uniformly in \(x \geq 1 \) and \(p_{q+1} \),

\[
\begin{align*}
\#((T_q(x) + \bar{q}) \setminus T_q(x)) &\leq C_1 \log(x)^{q-1}, \text{ by (6)} \\
\#T_q(p_{q+1}x) &\geq C_2 \log(p_{q+1}x)^{q}, \text{ by (5)}
\end{align*}
\]

whence there exists some positive constant \(C \) depending only on \(p_1, \ldots, p_q \) such that uniformly in \(x \geq 1 \), for any \(p_{q+1} \),

\[
\frac{\#((T_q(x) + \bar{q}) \setminus T_q(x))}{\#T_q(p_{q+1}x)} \leq \frac{C}{\log p_{q+1}}.
\]

Finally we may select \(n(q) \geq N(\varepsilon_q) \) so large that uniformly in \(x \geq 1 \),

\[
A(p_{q+1}, x) < \frac{1}{2} \varepsilon_q.
\]

For such choice of \(p_{q+1} \), we get that as soon as \(n \geq N(\varepsilon_q) \), for any \(\gamma \in \langle q \rangle \),

\[
\#\partial_\gamma(T_{q+1}(n)) / \#T_{q+1}(n) < \varepsilon_q,
\]

we have proved:

Lemma 2. Given \(q > 1 \), arbitrary coprime \(p_1 < \cdots < p_q \), arbitrary \(\varepsilon_q > 0 \), there exists an integer \(N(\varepsilon_q) \) and a \(p_{q+1} \geq N(\varepsilon_q) \) which is coprime to the \(p_i \)'s \((1 \leq i \leq q)\), such that for any \(\gamma \in \langle q \rangle \), if \(n \geq N(\varepsilon_q) \), (8) holds.

2.4. The inductive construction of good ID chains.

We fix a sequence \(\langle \varepsilon_q \rangle \geq 1 \)
of positive real numbers tending to 0. Next we select arbitrary \(p_1 > 0 \). Then a repeated inductive use of Lemma 2 produces a sequence \(p_1 < p_2 < p_3 < \cdots < p_{q+1} < \cdots \) of pairwise coprime integers, and another sequence \(\langle N(\varepsilon_i) \rangle \leq N(\varepsilon_2) \leq \cdots \leq N(\varepsilon_q) \leq \cdots \) of integers (we can choose them increasing), along with the corresponding properties in (8).

We then define, for each \(n \), the set \(T(n) \) as in (3). As before, \(T(n) = T_{q(n)}(n) \), where \(p_{q(n)} \leq n < p_{q(n)+1} \); then if \(n > p_2 \) (that is \(q(n) \geq 2 \)), and \(q < q(n) - 1 \),

\[
\gamma \in \langle q \rangle \subset \langle q(n) - 1 \rangle \Rightarrow \#\partial_\gamma(T_{q(n)}(n)) / \#T_{q(n)}(n) < \varepsilon_{q(n) - 1},
\]

because \(p_{q(n)} \) exceeds \(N(\varepsilon_{q(n) - 1}) \).

Now we fix \(\gamma \in l_0(\mathbb{N}) \) and select \(q \geq 2 \) such that \(\gamma \in \langle q \rangle \). Then if \(n_0 \) satisfies \(q(n_0) - 1 \geq q \), we obtain that for any \(n \geq n_0 \),

\[
\#\partial_\gamma(T(n)) / \#T(n) = \#\partial_\gamma(T_{q(n)}(n)) / \#T_{q(n)}(n) < \varepsilon_{q(n) - 1},
\]

by our inductive construction using Lemma 2. Since \(\varepsilon_{q} \rightarrow 0 \) and \(q(n) \rightarrow \infty \), this proves \((P2) \). By Lemma 1, we have proved Theorem 1.

References

On Strong Uniform Distribution, III

Author’s address: ISITV, Avenue G. Pompidou, B.P. 56, 83162 La Valette Cedex, France, e-mail: yves.lacroix@univ-tln.fr